

PROPOSED ACCESS ROAD RIFLE RANGE ROAD TO MARIA POINT SOUTHEAST TASMANIA

GEOTECHNICAL REPORT

Cover photo

View looking west across the western side of Mortimer Bay from near test pit A, July 30, 2014.

Refer to this report as

Cromer, W. C. (2014). Geotechnical report for a proposed access road, Rifle Range Road to *Maria Point, southeast Tasmania.* Unpublished report for Maria Point Pty Ltd by William C. Cromer Pty. Ltd., 14 August 2014; 84 pages.

Important Notes

New geotechnical information is contained in this report. The information may be useful to regulators and geotechnical practitioners. Dissemination of such knowledge ought to be encouraged by practitioners and regulators.

William C Cromer as author will upload this report to his website <u>www.williamccromer.com</u> as a freely downloadable file.

Permission is hereby given by William C. Cromer as author, and the client, for an electronic copy of this report to be distributed to, or made available to, interested parties, but only if it is distributed or made available in full. No responsibility is otherwise taken for its contents.

Permission is hereby given by William C. Cromer as author, and the client, for hard copies of this report to be distributed to interested parties, but only if they are reproduced in colour, and only distributed in full. No responsibility is otherwise taken for the contents.

The local planning or building authority is encouraged to make this report (or a reference to it) available on-line.

William C Cromer Pty Ltd may submit hard or electronic copies of this report to Mineral Resources Tasmania to enhance the geotechnical database of Tasmania.

SUMMARY STATEMENT

Geotechnical risks associated with a proposed 1.2km long access road from Rifle Range Road to Maria Point in southeastern Tasmania range from Very Low to Very High.

In the short to medium term, all risks are able to be managed so that Very Low and Low risks remain Acceptable, and higher risks are reduced to and maintained at Low and Acceptable levels. Recommendations are made to achieve these aims. The longer term risks which will be difficult to manage relate to sea level rise, storm surge and shoreline recession.

1 INTRODUCTION

1.1 Background

An access road about 1.2km long is proposed by Maria Point Pty Ltd from the end of Rifle Range Road to land owned by the company at Maria Point. The proposed route from points A to B on Figure 1 traverses land in other ownership, over a narrow strip of ground called a "Reserved Road" on old survey plans (Attachment 3).

Clarence City Council, and the owners of the land in other ownership, have objected to the proposal. The matter is currently being considered by the Resource Management and Planning Appeal Tribunal (RMPAT) which, in a Direction to Parties (Attachment 1), has requested a geotechnical report of the proposed access route.

William C Cromer Pty Ltd (WCC) was commissioned by Maria Point Pty Ltd to conduct the geotechnical investigation and report.

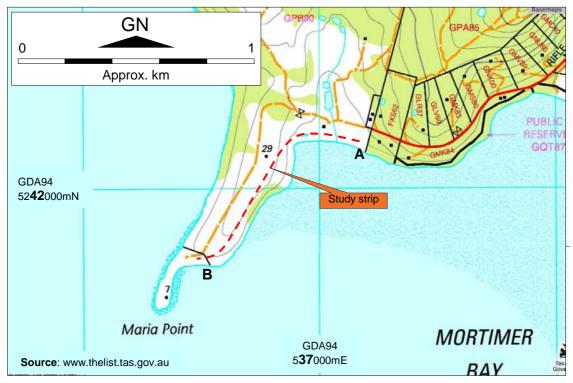


Figure 1 Location map showing the route of the access road from A to B (called the "Study strip" in this report) proposed by Maria Point Pty Ltd

1.2 Brief, guidelines and methodology

Brief

The RMPAT Brief in Attachment 3 is:

"...to carry out a Geotechnical Investigation along the length of the proposed access across 742, 750 and 765 Rifle Range Road, and terminating at the Maria Point site in order to determine the soil conditions present. The investigation is to be carried out in accordance with Austroads "Guide to Road Design Part 7" Geotechnical Investigations [sic] and Design""

Guidelines

In addition to the Austroads guidelines¹, the present work is also in general accordance with AS1726 (1993) *Geotechnical site investigations*, and the series of Landslide Risk Management

¹ Paul, R. and Grove, R. (2008). Guide to Road Design Part 7: Geotechnical Investigation and Design. Austroads Incorporated, Austroads Project No. TP1158, March 200881 pages.

documents produced by the Australian Geomechanics Society in 2007², supported by Cromer (2014)³.

Methodology

In this report, the narrow strip of ground corresponding more or less to the "Reserved Road" in Attachment 3 is called the "Study strip". Geotechnical investigations were not permitted outside this strip.

A preliminary site inspection along the study strip was conducted by WCC on 8 July in the company of engineer P. Holmes. Subsequently, the centreline of a 10m wide strip of land was surveyed and pegged out by Noel Leary & Associates.

The study strip was investigated on 30 and 31 July 2014, when 19 test pits dug by a 4.5t rubber-tracked excavator were logged, photographed and tested. Prior and subsequent office work included:

- a desk top review of geological and landslide hazard maps (Attachment 2), and
- compilation of all field data, and a Landslide Risk Management (LRM) assessment

Presentation of data

The test in the body of this report has been kept to a minimum. Evidence to support the findings of the report is presented in detail in the accompanying Attachments.

1.3 Access strip is considered in three sections

Geotechnically, the access strip can be divided into three sections (Sections 1, 2 and 3) as shown in Attachment 3.

- Section 1 is the low-lying strip behind the beach, between test pits A and E, comprising flat-lying ground underlain by beach sands and estuarine clays over bedrock,
- Section 2 is the undulating and locally steep ground near test pit E, rising to about test pit K, and comprising aeolian sands and colluvial deposits over bedrock, and
- Section 3 is the higher ground from about test pit K to test pit S, underlain by soil over shallow bedrock (and a strip of fill along the alignment of an abandoned access track to Maria Point).

² The five AGS documents are:

AGS (2007a). Guideline for Landslide Susceptibility, Hazard and Risk Zoning. Australian Geomechanics, Vol 42 No 1 March 2007

AGS (2007b). Commentary on Guideline for Landslide Susceptibility, Hazard and Risk Zoning. Australian

Geomechanics, Vol 42 No 1 March 2007

AGS (2007c). Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

AGS (2007d). Commentary on Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

AGS (2007e). The Australian Geoguides for Slope Management and Maintenance. Australian Geomechanics Vol 42 No 1 March 2007

³ Cromer, W. C. (2014). *Building for landslide: Geotechnical guidance for regulators and practitioners using the Tasmanian Landslide Code*. Draft report for the Tasmanian Department of Premier and Cabinet by William C. Cromer Pty. Ltd., June 2014).

2 SITE DESCRIPTION

2.1 Topography, relief and drainage

Topography and relief

The study strip flanks low-lying land at or near sea level behind the beach at the western end of Mortimer Bay (Section 1). At the western end of the beach, the land rises fairly steeply to elevations around 20m (Section 2), and falls gradually in a southerly direction towards Maria Point (Section 3).

The land is almost flat in Section 1. In Section 2, slope angles are in the $12 - 28^{\circ}$ range (Attachment 4). In Section 3, east-facing slopes east of the study strip range from about $20 - 25^{\circ}$, but the access strip itself follows a break of slope along an abandoned track and is on gentler east-facing slopes in the $15 - 18^{\circ}$ range.

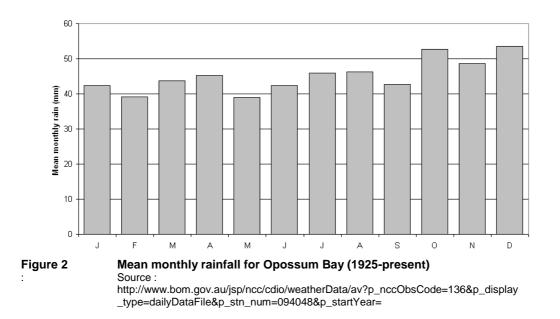
Surface drainage (Attachment 6)

Section 1

An intermittent Class 3 or 4 watercourse crosses Section 1. Its passage across the study strip is ill-defined, with no obvious channel.

Section 2

It is reported that a seepage/spring line crosses Section 2, probably between test pits E and H. There was no obvious surface expression observed during the current investigations.


Section 3

No drainage lines were observed along Section 3.

2.2 Rainfall

Opossum Bay is the nearest relevant rainfall station to the property. Figures are available since 1925 (Table 1). Annual rain averages 541mm, which is fairly evenly distributed through the year⁴.

Intensity-frequency-duration curves for the location (Figure 3) suggest that short-lived (a few minutes) rainfalls of up to about 30mm/hour has a one year recurrence interval. A similar intensity over 30 minutes has a recurrence interval of 10 years, and over 45 minutes a recurrence interval of 20 years.

⁴ Assuming a runoff coefficient of 0.7, for example, monthly runoff is 70kL/ha for each 10mm of rain.

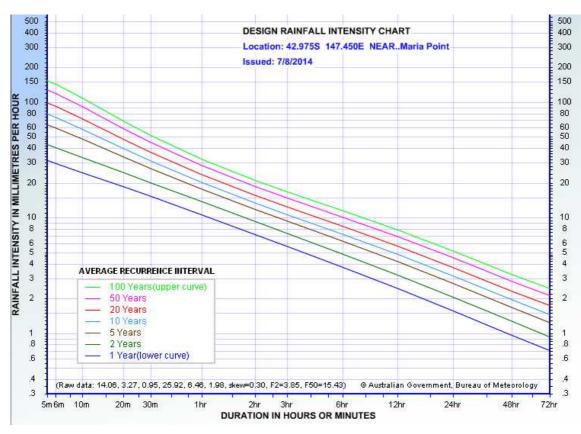


 Figure 3
 Rainfall intensity-frequency-duration chart for Maria Point

 :
 Source : http://www.bom.gov.au/water/designRainfalls/ifd-arr87/index.shtml

2.3 Geology

Published bedrock geology

The published geology⁵ of the area (Attachment 2) shows that shallowly W to WSW-dipping Permian siltstone and sandstone of the Abels Bay Formation underlies Maria Point and the study strip described in this report. Low-lying ground behind the beach at the end of Rifle Range Road is underlain by undifferentiated Quaternary unconsolidated sediments.

Observed geology (Attachment 6)

The observed geology is in general accord with the published geology.

Quaternary colluvium (Attachment 6)

Material interpreted as colluvial in origin was exposed in several test pits (Attachments 5 and 6), where it typically consists of gravelly sand (GW), and clayey sand (SC, CL).

2.4 Soils and Fill

Soils (Attachments 4, 5 and 6)

<u>Section 1 soils</u> comprise uniform sandy profiles a metre or so thick, overlying siltstone bedrock or estuarine clay.

<u>Section 2 soils</u> are uniform profiles of aeolian sands over siltstone bedrock or beach shingle, or duplex profiles up to about 1.5m thick consisting of a dark-coloured topsoil sand over subsoil clay or gravelly clay, usually overlying colluvium.

⁵ Calver, C. R. and Latinovic, M. (compilers) 2002. Digital Geological Atlas 1:25,000 Scale Series. Sheet 5224. Taroona. Mineral Resources Tasmania.

<u>Section 3 soils</u> are duplex profiles up to about 1m thick consisting of a dark-coloured topsoil silty sand over subsoil clay or gravelly clay, overlying siltstone bedrock.

Fill

No significant areas of fill were observed.

Bearing capacity of materials (Attachment 5)

Testing shows that surface materials along the study strip are of low strength, with DCP values (blows/l00mm) are often less than 2, and CBR (%) less than 3.

A range of higher DCP and CBR was recorded for subsurface clays, colluvium and aeolian sand, with DCP refusal on bedrock.

These strength testing results will be useful guides for pavement design for the access road.

Reactivity of materials

No subsurface materials were tested for reactivity⁶.

Soil dispersion

Soils and colluvium are mostly non-dispersive. See Attachment 8. Tunnel erosion is not, and will not be, a significant problem along the proposed access road.

Soil infiltration capability

Refer to Attachment 7. Infiltration rates in the sandy topsoils along the route are expected to range up to about 30mm/hour depending on soil saturation and slope angle.

2.5 **Groundwater (Attachment 6)**

Groundwater in unconfined, fractured rock aquifers

Permanent groundwater is present under unconfined conditions in fractured bedrock types in the district. The groundwater is recharged by infiltrating rain and at intermediate scale discharges to Mortimer Bay.

Shallow groundwater in unconfined sediments

Sections 1 and 2

Shallow groundwater was observed in aeolian and beach sands in test pits B, C, D, E and G. No water table depths were recorded since water inflow was continuing when the pits were backfilled. Nevertheless, a permanent water table is expected to be present in these materials at depths close to mean sea level, and locally fluctuating with tides. Groundwater movement is expected to be very slow, and towards the coast.

3 LANDSLIDE RISK MANAGEMENT (LRM)

Attachment 8 is a LRM for Section 2 of the study strip, in general accordance with the Australian Geomechanics Society (AGS) *Landslide Risk Management* (2007).

4 **GENERAL GEOTECHNICAL RISK ASSESSMENT**

In Tables 1, 2 and 3, a range of geotechnical issues (including those addressed in the LRM in Attachment 8) has been canvassed for each of the three sections of the study strip. The likelihood of each issue has been assessed, its consequences to road construction are suggested, the level of risk associated with each is proposed, and where appropriate,

⁶ Reactive materials contain clays which shrink and swell in volume when their moisture content decreases or increases respectively.

recommendations are made to treat (manage) the risk⁷. See Figure 1 for an explanation of terms used.

Rated risks range from Very Low to Very High:

- In Section 1, the highest risks relate to low strength (surface) materials, waterlogging/flooding and storm surge, and in the longer term, to sea level rise and shoreline recession.
- In Section 2, the highest risks relate to shallow-seated landsliding, low strength (surface) materials, localised waterlogging/flooding, and in the longer term, to shoreline recession.
- In Section 3, a high risk relates to low strength (surface) materials

In the short to medium term, all risks are able to be managed so that (a) Very Low and Low risks remain Acceptable, and (b) higher risks are reduced to and maintained at Low and Acceptable levels. The longer term risks which will be difficult to manage are mainly restricted to Section 1 and relate to sea level rise, storm surge and shoreline recession.

Recommendations are made to achieve these aims.

⁷ It is up to stakeholders to decide whether any evaluated risk is acceptable or not. A rough guide might be to consider all Very low and Low geotechnical risks as acceptable and not requiring treatment, Moderate risks to be acceptable or tolerable and may require treatment, and High and Very high risks as tolerable or intolerable, and generally requiring treatment. Treatment is designed to reduce risks to acceptable or tolerable levels. It may include Accepting the risk, Avoiding the risk (ie abandoning the project), Reducing the likelihood of the hazard occurring (ie stabilisation measures to control triggering circumstances), Reducing the consequences (eg suitable construction design), Monitoring and warning systems (which might help reduce the consequences of the hazard), Transferring the risk (eg requiring another authority to accept the risk or compensate for the risk, such as insurance companies), and Postponing a decision (eg if there is insufficient certainty about the risk, it might be better to do further investigations).

5 CONCLUSIONS

From a geotechnical perspective, an access road along the survey strip presents manageable short to medium term risks.

6 **RECOMMENDATIONS**

From a geotechnical viewpoint, development of the access road should proceed subject to the recommendations listed in Table 1, 2 and 3. Some of these are described in more detail in Attachment 8. The good hillside construction practices described in Attachment 9 shall also be followed.

W. Comment

W. C. Cromer Principal

This report is and must remain accompanied by the following Attachments

- Attachment 1. RMPAT Direction to Parties including a Brief for a geotechnical report (1 page)
- Attachment 2. Published geology and landslide hazard bands (1 page)
- Attachment 3. Survey plans showing topography, surveyed peg locations, and test pits dug 30, 31 July 2014 (2 pages)
- Attachment 4. Geotechnical fact map of southern part of study strip (2 pages)
- Attachment 5. Engineering logs of test pits dug 30 and 31 July 2014 (20 pages)
- Attachment 6. Site and test pit photographs (8, 30 and 31 July, 2014) (24 pages)
- Attachment 7. Geology, soils, surface drainage ad groundwater (7 pages)
- Attachment 8. Landslide Risk Management (9 pages)
- Attachment 9. Examples of good and poor hillside engineering practices (3 pages)

Table 1 SECTION 1: Summary of geotechnical issues, risks and consequences to access road development, and suggested risk treatment practices

	lag	Likelihood of	Consequences	Level of risk	Diek tractment
	Issue	occurrence	to development	to development	Risk treatment
1	Surface soil erosion	Possible	Minor	Moderate	Control upslope surface runoff with table drains and culverts
2	Tunnel erosion	Unlikely	Minor	Low	As for issue 1
3	Soil creep	Rare	Minor	Very Low	No action required
4	Shallow-seated landslide or debris slide	Barely Credible	Medium	Very Low	No action required
5	Rock/earth topples and falls	Barely credible	Insignificant to Minor	Very low	No action required
6	Deep-seated landslide (involving, eg boulder beds, talus, colluvium, bedrock etc); includes runout	Barely Credible	Major	Very Low	No action required
7	Foundation movement due to reactive or unstable soils	Unlikely	Minor	Very Low	No action required
8	Low strength materials (eg uncontrolled fill, soft soils)	Almost Certain	Medium	Very High	Employ appropriate road construction techniques
9	Vegetation removal	Unlikely	Minor	Low	No action required
10	Flooding or waterlogging	Likely	Minor to Medium	Moderate to High	Employ appropriate road construction including drainage techniques
11	Shore bank collapse	Likely	Insignificant	Low	No action required
12	Site contamination from previous activities	Locally possible	Insignificant	Low	Visual inspection during site construction, and clean up as required.
13	On-site domestic wastewater disposal	Not applicable			
14	Earthquake risk	Almost certain (magnitude <5); Likely (magnitude>5)	Insignificant to Minor	Low to Moderate	Generally accept risk. A similar range of risks exists throughout Tasmania.
15	Sea level rise	Likely	Insignificant (short to medium term) to Major (long term)	Low (short to medium term) to Very High (long term)	Employ appropriate road construction including drainage techniques
16	Storm surge	Likely	Minor to Major	Low to Very High	Employ appropriate road construction including drainage techniques
17	Shoreline recession	Likely	Insignificant (short to medium term) to Major (long term)	Low (short to medium term) to Very High (long term)	Employ appropriate road construction including drainage techniques

1. The assessments are unavoidably subjective to varying degrees.

2. See next page for an explanation of the terms used in this table.

3. Further reading: Australian Geomechanics Society Subcommittee (2007). Landslide Risk Management Aust. Geomechanics 42(1) March 2007, pp 1 – 219.

Table 2 SECTION 2: Summary of geotechnical issues, risks and consequences to access road development, and suggested risk treatment practices

	lacus	Likelihood of	Consequences	Level of risk	
	Issue	occurrence	to development	to development	Risk treatment
1	Surface soil erosion	Possible	Minor	Moderate	Control upslope surface runoff with table drains and culverts
2	Tunnel erosion	Unlikely	Minor	Low	As for issue 1
3	Soil creep	Unlikely	Minor	Low	No action required
4	Shallow-seated landslide or debris slide	Likely	Minor to Major	Moderate to Very High	Construct engineered, drained retaining walls to cope with lateral stresses; employ good hillside construction techniques (Attachment 9)
5	Rock/earth topples and falls	Barely credible	Insignificant to Minor	Very low	No action required
6	Deep-seated landslide (involving, eg boulder beds, talus, colluvium, bedrock etc); includes runout	Barely Credible	Major	Very Low	No action required
7	Foundation movement due to reactive or unstable soils	Unlikely	Minor	Very Low	No action required
8	Low strength materials (eg uncontrolled fill, soft soils)	Almost Certain	Medium	Very High	Employ appropriate road construction techniques
9	Vegetation removal	Likely	Insignificant	Low	No action required
10	Flooding or waterlogging	Locally Likely	Minor to Medium	Moderate to High	Employ appropriate road construction including drainage techniques
11	Shore bank collapse	Locally Likely	Insignificant	Low	No action required
12	Site contamination from previous activities	Locally possible	Insignificant	Low	Visual inspection during site construction, and clean up as required.
13	On-site domestic wastewater disposal	Not applicable			
14	Earthquake risk	Almost certain (magnitude <5); Likely (magnitude>5)	Insignificant to Minor	Low to Moderate	Generally accept risk. A similar range of risks exists throughout Tasmania.
15	Sea level rise	Likely	Insignificant	Low	Employ appropriate road construction including drainage techniques
16	Storm surge	Likely	Minor	Moderate	Employ appropriate road construction including drainage techniques
17	Shoreline recession	Likely	Insignificant (short to medium term) to Major (long term)	Low (short to medium term) to Very High (long term)	Employ appropriate road construction including drainage techniques

1. The assessments are unavoidably subjective to varying degrees.

2. See next page for an explanation of the terms used in this table.

3. Further reading: Australian Geomechanics Society Subcommittee (2007). Landslide Risk Management Aust. Geomechanics 42(1) March 2007, pp 1 – 219.

Table 3SECTION 3: Summary of geotechnical issues, risks and consequences
to access road development, and suggested risk treatment practices

	Issue	Likelihood of	Consequences to	Level of risk to	Risk treatment
		occurrence	development	development	
1	Surface soil erosion	Possible	Minor	Moderate	If stormwater runoff is concentrated by access formation, control it with table drains, culverts and retention/diffusing trenches
2	Tunnel erosion	Unlikely	Minor	Low	As for issue 1
3	Soil creep	Unlikely	Minor	Low	No action required
4	Shallow-seated landslide or debris slide	Unlikely	Minor to Medium	Low	No action required
5	Rock/earth topples and falls	Barely credible	Insignificant to Minor	Very low	No action required
6	Deep-seated landslide (involving, eg boulder beds, talus, colluvium, bedrock etc); includes runout	Barely Credible	Major	Very Low	No action required
7	Foundation movement due to reactive or unstable soils	Unlikely	Minor	Very Low	No action required
8	Low strength materials (eg uncontrolled fill, soft soils)	Almost Certain	Medium	Very High	Employ appropriate road construction techniques
9	Vegetation removal	Unlikely	Insignificant	Low	No action required
10	Flooding or waterlogging	Unlikely	Minor to Medium	Low	Employ appropriate road construction including drainage techniques
11	Shore bank collapse	Locally Likely	Insignificant	Low	No action required
12	Site contamination from previous activities	Locally possible	Insignificant	Low	Visual inspection during site construction, and clean up as required.
13	On-site domestic wastewater disposal	Not applicable			
14	Earthquake risk	Almost certain (magnitude <5); Likely (magnitude>5)	Insignificant to Minor	Low to Moderate	Generally accept risk. A similar range of risks exists throughout Tasmania.
15	Sea level rise	Likely	Insignificant	Low	No action required
16	Storm surge	Likely	Insignificant	Low	No action required
17	Shoreline recession	Likely	Insignificant	Low	No action required

1. The assessments are unavoidably subjective to varying degrees.

2. See next page for an explanation of the terms used in this table.

3. Further reading: Australian Geomechanics Society Subcommittee (2007). Landslide Risk Management Aust. Geomechanics 42(1) March 2007, pp 1 – 219.

	N G
--	--------

	VALL AVEAU A	QUALITATIVE KISK ANALYSIS MATKIX – LEVEL OF KISK TO PROPERTY					
	LIKELIHOOD	000	CONSEQUE	CONSEQUENCES TO PROPERTY		(With Indicative Approximate Cost of Damage)	of Damage)
		Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
ALMOST CERTAIN	ERTAIN	10.1	HA	HA	HA	H	M or L (5)
LIKELY		10.2	HA	HA	Н	W	T
POSSIBLE		10.3	HA	H	M	M	AL
UNLIKELY		10-4	Н	M	Р	Г	AL
RARE		10.2	M	L	L	AL	AL
BARELY CREDIBLE	REDIBLE	9.01	L	NL	AL.	AL	NI,
	Risk Level			Exam	Example Implications (7)		
НЛ	VE	RY HIGH RISK	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the property.	. Extensive detailed invi- to Low; may be too expe	estigation and research, pl nsive and not practical. V	lanning and implemer Vork likely to cost me	itation of treatment ore than value of the
Н		HIGH RISK	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.	. Detailed investigation, substantial sum in relati	planning and implements on to the value of the pro-	ution of treatment opt perty.	ions required to reduce
M	MO	MODERATE RISK	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as practicable.	umstances (subject to reg tions to reduce the risk to tble.	(ulator's approval) but req	uires investigation, p	lanning and k should be
L		LOW RISK	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.	. Where treatment has b	een required to reduce the	risk to this level, on	going maintenance is
VL	VE	VERY LOW RISK	Acceptable. Manage by normal slope maintenance procedures.	slope maintenance proc	edures.		

Figure 1

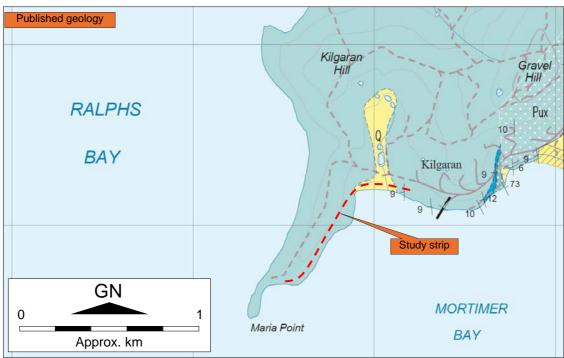
Terminology used in geotechnical risk assessment. Source: AGS (2007c). Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

Attachment 1 (1 page) RMPAT Directions to Parties including a Brief for a geotechnical report

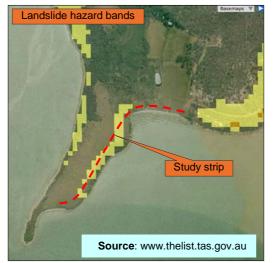
Date: 2 July 2014

File No: 20/14 P

Citation: Maria Point Pty Ltd v Clarence City Council


- Pursuant to the powers vested in it by Section 22(1) of the Resource Management and Planning Appeal Tribunal Act 1993 (the 'Act') the Tribunal directs the Applicant, Maria Point Pty Ltd to carry out a Geotechnical investigation along the length of the proposed access across 742, 750 and 765 Rifle Range Road, and terminating at the Maria Point site in order to determine the soil conditions present. The investigation is to be carried out in accordance with Austroads "Guide to Road Design Part 7 "Geotechnical Investigations and Design"; and
- 2. Prepare a concept drainage plan(s) based thereon.
- 3. The Appellant is to file and serve the geotechnical report and accompanying concept plans on each of the Respondents within 21 days.
- 4. Each of the Respondents will be afforded a further period of 14 days to file any further evidence in response thereto.
- 5. There shall be liberty to apply in relation to the timetable imposed by the Tribunal.

GP Geason M E Ball P Spratt


Attachment 2 (1 page) Published geology and landslide hazard bands

Source: Calver, C. R. and Latinovic, M. (compilers) 2002. Digital Geological Atlas 1:25,000 Scale Series. Sheet 5224. Taroona. Mineral Resources Tasmania.

Key to rock types

All shades of blue = Permian-age sedimentary rocks (symbol Pua = Abels Bay Formation – unfossiliferous, glaciomarine interbedded mudstone, siltstone, sandstone, pebbly sandstone); Yellow (symbol Q) = Quaternary-age undifferentiated, unconsolidated beach, aeolian and alluvial deposits.

Acceptable band

A landslide is a rare event based on current understanding of the hazard, but it may occur in some exceptional circumstances.

Low band

The area may include landslide features but their activity is unknown, and they have been judged by MRT to rank of lesser risk than those in higher bands.

Medium band

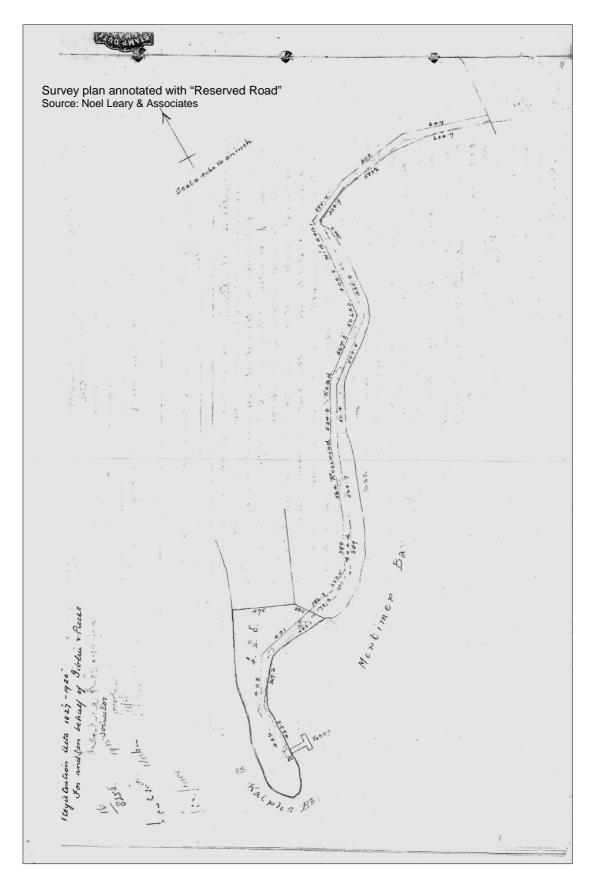
The area has known landslide features, or is within a landslide susceptibility zone, or has legislated controls to limit disturbance of adjacent unstable areas.

Medium-active band

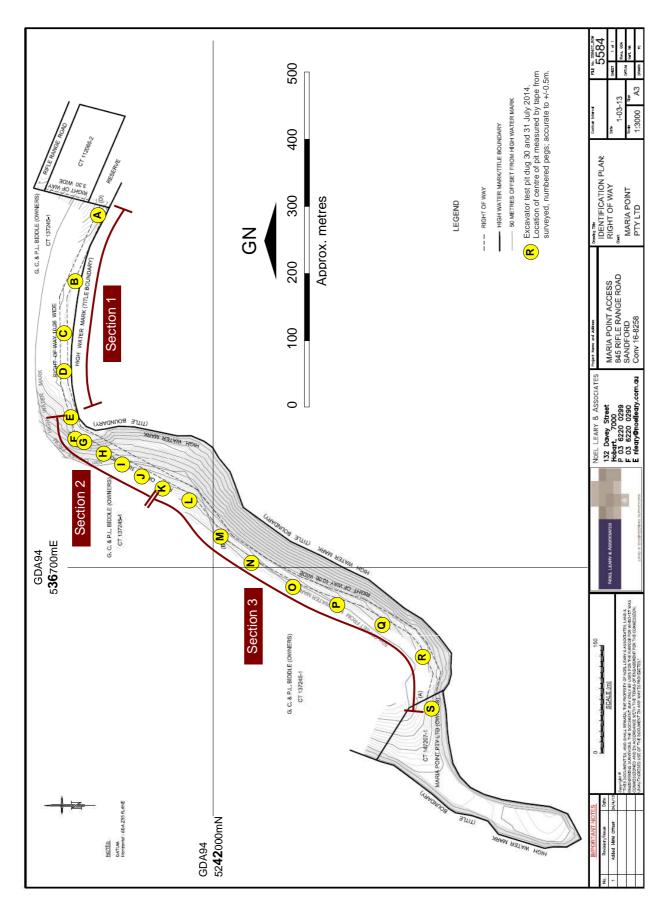
The area has known recently active landslide features.

<u>High band</u>

The site is within a declared Landslip A area.

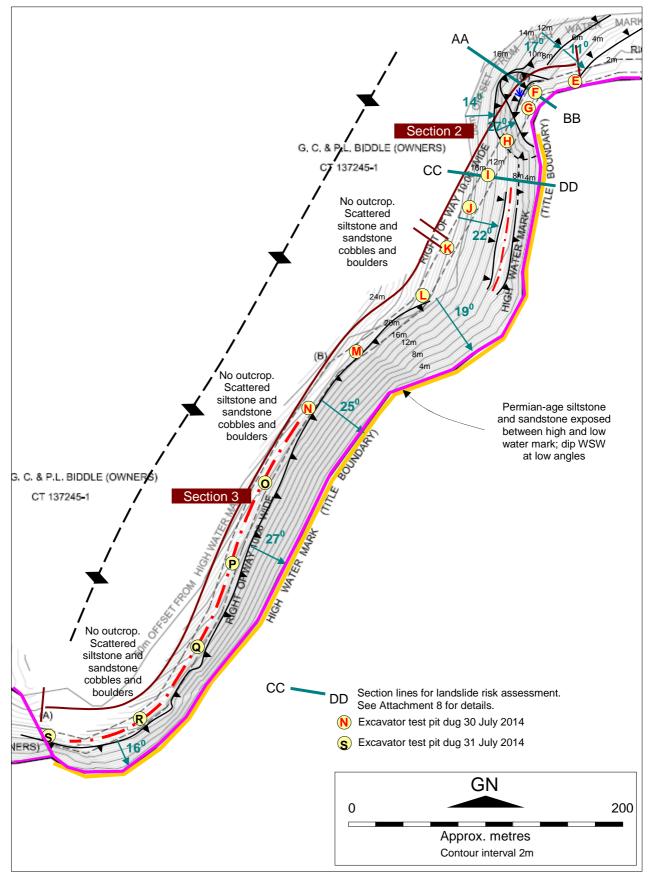


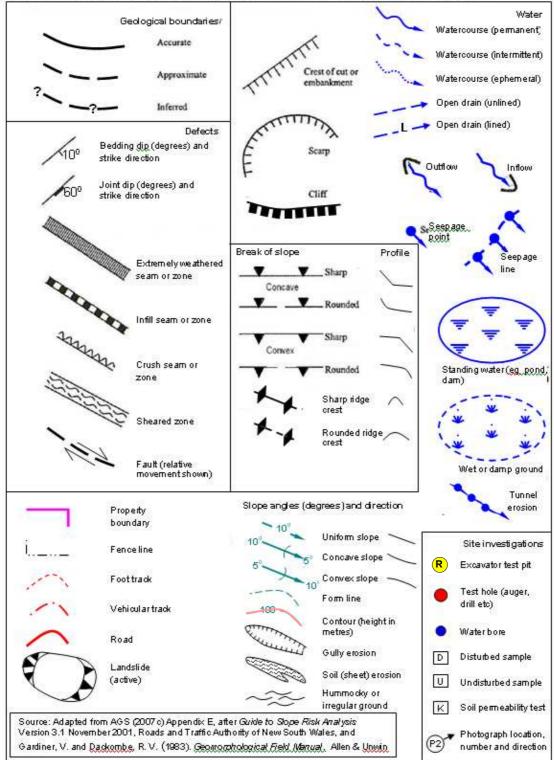
Attachment 3


(3 pages)

Survey plans showing topography, surveyed peg locations, and test pits dug 30, 31 July 2014 Source for base plans: Noel Leary & Associates

5584 HORE COM 12 A HUN AI 28-07-14 Careau Internet 1.00m 1:1500 Brts PLAN SHOWING STAKES PLACED MARIA POINT PTY LTD MARIA POINT ACCESS 845 RIFLE RANGE ROAD SANDFORD Conv 16-8258 Project Name and Address NOEL LEARY & ASSOCIATES com.au 132 Davey Street Hobert, 7000 P 03 6220 0299 F 03 6220 0290 E nleary@noelleary.c VORL LEARY & AS NOEL LEARY & ASSOCIATES, LAND & ED FOR THE PURPOSE FOR WHICH IT W ENGAGEMENT FOR THE COMMISSION. SHALL REMAIN, THE PROPER Dute


GDA94 52**42**000mN



Attachment 4 (2 pages) Geotechnical fact map of southern part of study strip Source for base plans: Noel Leary & Associates

Geological and geomorphological mapping symbols and terminology used in this report

Attachment 5 (20 pages including this page) Engineering logs of test pits dug 30 and 31 July 2014

						nental,	engineering and groundwater g	eologists					L A
			avat			a							t A Sheet 1 of 1
						<u> </u>	ss driveway		Loca	tion			Sheet 1 of 1
	_	nate	s 537	198mE			Exposure type Exc				Da	te dug 30	July 2014
Dat	um		GD	A94				Komats					July 2014
RL Dim	ens	sion	Арр s (m)	rox. 1.5	m AH	D		bucket v n Edwar		eth			C. Cromer C. Cromer
			Length 1	.7 Widt	th 0.6			Luwai			Streng		
ion	ort	Water	Notes	metres	log	nscs	Materials Soil type, colour, plasticity or	ure ion	ncy dex	Hand penetr-	Shear Vane	Dynamic cone penetrometer	Structure, geology and
Penetration	Support	Ň	Samples and tests		Graphic log	SN	particle characteristics, secondary and minor components	Moisture condition	Consistency Density index	ometer (kPa)	(kPa)	(Blows per	interpretation
1 2 Per				RL Depth	Gra			< 0	Con Dens	4200 4200 4200 4200 4200 4200 4200 4200	. ,	100mm)	
- (18)		GNE			00	SP	Silty SAND: grey-black; some cream shell fragments	М	MD	-	-	14000000000000000000000000000000000000	Organic A horizon _
		0			2000	SP	Shelly SAND: cream with grey	м	L	E]		Shell hash?
				- 0.5 -			matrix; >80% shell fragments to 15mm;		_	_			-
	-						SILTSTONE: olive green and brown; strongly fractured;						Bedrock
				- 1 -			moderately weathered; dip 5 deg SW			-	-		-
				[]			Excavator refusal at 0.7m on Permian-age siltstone bedrock			-	-		-
										-	-		-
				- 1.5 -								537	DA94 000mN
											ART	FE	
											and the second s	, A	
									DAGA			K	
									DA94 2 42 000r	and the second se	N	M	
				- 2.5 -							0	/	
										1	Р		
											O P Q R		
									1				
									1	United or	And the second	G	N
				- 3.5 - 					U		<u>•</u>	Approx.	500 metres
			0.5m	II								Graphic	
		V and H scal	e										CLAY (CH, CL)
).5n						We	st		East)m		
	ry N	/ = M	oist W = W	et				0.0000	() () () () () () () () () () () () () (SAND (SP)
D = 0 50mr	isturb	oed; U	50 = undistur drive tube (to	bed;			0000	966666 88886	10000	C	0.5		SILT (SM)
botto Wat	n dep	oths s	hown)	,							m —		
T		Vater	level										GRAVEL (GP, GW)
			inflow outflow								.5		COBBLES (63-200mm)
GNE		oundv	vater not				2m	1.5	m (0.5	2m — 📲		BOULDERS (>200mm)
_	etra 3 4	atio						1.3				୍ ଜ	SHELLS SHELL FRAGMENTS
		No resi											ROOTS
Consis	tency	Refusa y (silt,	clay, sandy	clay, silty c	lay) VS	= Very s	soft (<25kPa; exudes in fingers when squ	eezed); S :	= Soft (25-	50kPa; easilv	penetrated by fist)	F = Firm (50-100kPa	FRACTURES
thumb) Fb = Fr	St =	Stiff (crum	(100-200kPa; bles or powd	indented b ers when s	oy thumb craped I	o, penetra by thumb	ated with difficulty); VSt= Very Stiff (200-4	00kPa; eas	ily penetra	ated by thumbr	nail); H = Hard (>40	00kPa; indented by thu	mbnail with difficulty);

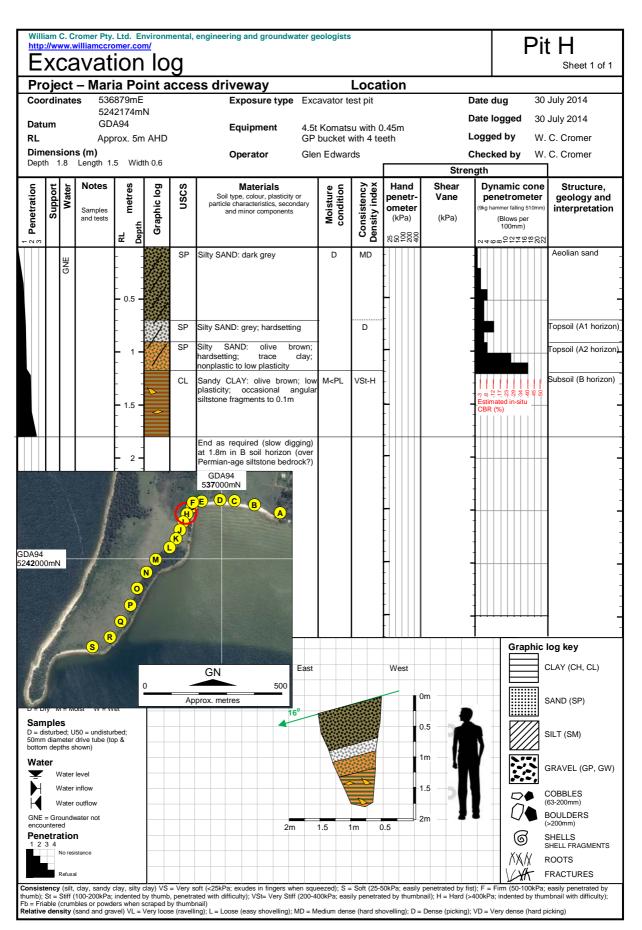
Г	Will	iam	n C. (Cro	mer Pty.	Ltd. Er	vironn	nental,	engineering and groundwat	er ge	ologists						<u> </u>	<u> </u>
	http	://v	vww	.wil	liamccro	mer.co	<u>m/</u>										Pi	t B
L					vat			<u> </u>										Sheet 1 of 1
		-						ICCE	ss driveway	_		Loca	tion			(huhu 004.4
	00	ord	inat	es		131mE 2192m			Exposure type	EXC	avator te	est pit				te du	•) July 2014
	Dat	um	ı		GD						Komats					te log gged		July 2014
	RL Dim	nen	isio	ns	App (m)	rox. 2m	1 AHD				bucket v n Edwar		eth			ggeu ecke	-	. C. Cromer . C. Cromer
					ength 1.	4 Wid	th 0.6		operator	Olei	Lawai	us			Streng		aby w	
F	Б	ţ			Notes	es	Бc	SS	Materials		e no	ex c	Han		ear	Dyna	amic cone	,
	Penetration	Support	Water		Samples	metres	Graphic log	nscs	Soil type, colour, plasticity or particle characteristics, seconda and minor components	r ary	Moisture condition	Consistency Density index	pene omet		ine	•	etrometer mer falling 510mm	1.0 07
	ene	U.	ין		and tests		Brap				Mo	onsi nsit	(kPa	, ,	Pa)	(E	Blows per 100mm)	
Ļ	<u>n 6</u>					RL Depth	0					ပီရ	22 25 100	200 400			001100	
N								SP	SAND: beige; fine-med grain		D	L			-			Aeolian sand
							000		Shelly SAND: dark grey; 2 shell fragments to 15mm	20%		MD			-			3each sand
						- 0.5 -			Shelly SAND: dark grey; >8	30%	M-W	MD	-		-			Shell hash?
									shell fragments to 15mm SILTSTONE: yellow bro	wn;					-			
ļ			F				000		subhorizontal; mod fractured;	;					- DCP refusal			
						- 1-			Excavator refusal at 0.9m Permian-age siltstone bedroo						DCP rerusar			3edrock
													-		-			
													-		_			
						- 1.5 - 										-		DA94 7000mN
																1	FE	
																		A
						- 2-										d.	K,	
												DA94 2 42 000n	nN	and the second		M		
												212000		1	N			
															0			
													1					
						- 3-								R	0 P Q			
												1		S				
												Pi	10			1.1.94	G	N
						- 3.5 -									0			50
\square							ι	L				2	道母				Approx.	
		Γ	V an	d).5m													log key
	,	<u>ן</u>	H sc	ale														CLAY (CH, CL)
I	ر Moi).5 sti							West	1212		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	East	0m				SAND (SP)
L	D = D	Dry	M = I	Mois	st W = W	et				0						-		(0.)
	San D = d 50mn	listu	rbed;	U50) = undistur	bed;					000000	00000		0.5		۱ t		SILT (SM)
	50mm diameter drive tube (top & bottom depths shown)							<u> </u>	000	399996	00000		1m -					
	Wat			er lev	vel										4			GRAVEL (GP, GW)
	Water level Water inflow												-1.5	24			COBBLES	
	H				utflow			_									\tilde{n}	(63-200mm) BOULDERS
	enco	unte	ered		ter not				2m		1.5 1	m ().5	2m				(>200mm)
	1 2		ratio 4 Nore		Ince												G	SHELLS SHELL FRAGMENTS
					110 0												XXX	ROOTS
	onsis	tenr	Refu		av. sandv (clay, silty	clav) VS	= Verv s	soft (<25kPa; exudes in fingers wher	ก รณะ	ezed): S =	Soft (25-5	50kPa: ea	asily penetra	ted by fist).	F = Fir	m (50-100kPa	FRACTURES
th Ft	umb);) = Fri	St =	= Stiff e (cru	i (10 mble	0-200kPa; es or powde	indented l ers when s	by thumb scraped b	o, penetra by thumb	ated with difficulty); VSt= Very Stiff (2 mail)	200-40	00kPa; eas	ily penetra	ted by the	umbnail); H =	= Hard (>40	0kPa; ir	ndented by thu	mbnail with difficulty);
R	elativ	e de	ensity	ı (sa	nd and gra	vel) VL =	Very loos	se (ravell	ing); L = Loose (easy shovelling); MI	D = M	edium dens	e (hard sh	ovelling);	D = Dense	(picking); VI) = Ver	y dense (hard	picking)

AA711	lor"	<u> </u>	omor Di-	140 5	avire	ontel	ongineering and con-	nductor -							
http)://w	ww.v	villiamccro	omer.co	<u>m/</u>		engineering and grou	nawater g	jeoiogists					Pi	t C
E	X	Ca	avat	ION	10	g									Sheet 1 of 1
						<u> </u>	ss driveway			Loca	tion				
Coc	ordi	nate		060mE			Exposure	ype Exc	cavator te	st pit			Date	dug 30	July 2014
Dat	um			2210m A94	IN		Equipment	4 5	t Komats	u with ∩	.45m		Date	ogged 30	July 2014
RL				orox. 1.5	5m AHI	C	_qupinen		bucket v				Logg	ed by W.	C. Cromer
			s (m) Length 1.	.2 Wid	th 0.6		Operator	Gle	en Edward	ds				ked by W.	C. Cromer
			-										Strength		
¹ ² Penetration	Support	Water	Notes Samples and tests	RL metres Depth	Graphic log	nscs	Materials Soil type, colour, pla particle characteristics, and minor compo	sticity or secondary	Moisture condition	Consistency Density index	Hand penetr omete (kPa)	r Van (kPa	e pe ^{(9kg ha}	namic cone metrometer Immer falling 510mm) (Blows per 100mm)	Structure, geology and interpretation
						SP	SAND: dark grey; grained	fine-med	D	L	-		-		Organic sand
							SAND: beige; fine-me	d grainod		MD	-				Beach sand
				- 0.5 -			shelly horizon near 0.	9m	, M	IVID	-				Beach sand
									IVI		-				-
											$\left \left \left \right \right \right $				
				- 1-	080				M-W W						-
				6 3					vv		-				-
											-				-
-				 - 1.5 -			End as required at	1.5m Dit			-				
							collapsing below 0.5m				-				-
				12.3		- mark	GDA94 5 37 000mN								
			Į		:	G	E DC B	THE .			-		Estin CBR	복 두 워 워 콩 훅 훅 용 융 nated in-situ (%)	-
				Carlo and		Å		A			-				-
					1	$\frac{1}{2}$		and a							
GDA94						Yal					-				-
52 42 00			1		M	H.					-				-
				0	/						-				
		1		0 P Q							-				
		1		Q											
	1			y							-				
	Ser.		_ <mark>S</mark>					1			H		┥┼┼		- 1
r	1						GN						1		<u> </u>
6				()	۸		00						Graphic	log key
		30.37		seneot		мρ	prox. metres								CLAY (CH, CL)
).5r							West			East	∎ 0m			
D = D			oist W = W	/et											SAND (SP)
San D = d			50 = undistu	rbed:		_						0.5	1		
50mm	n diar		drive tube (to						the star to	in (*					SILT (SM)
Wat							Collapsing		0.0	99		-1m —			GRAVEL (GP, GW)
		Nater					•					4.5			C. 0 (VEL (OF, OVV)
		Nater Nater	inflow outflow									-1.5			COBBLES (63-200mm)
	= Gr	oundv	vater not									2m	11		BOULDERS
	netra	atio	า					2m	1.5 1	m C	.5				(>200mm) SHELLS
1 2	34														SHELL FRAGMENTS
		Refusa													ROOTS FRACTURES
Consis	tency	y (silt,	clay, sandy	clay, silty	clay) VS	= Very s	oft (<25kPa; exudes in fing	ers when sq	ueezed); S =	Soft (25-5	0kPa; eas	ily penetrated	d by fist); F =	Firm (50-100kPa;	easily penetrated by
Fb = Fr	iable	(crum	bles or powd	ers when s	scraped b	y thumb	ated with difficulty); VSt= Ve nail) ing); L = Loose (easy shove							-	
Relativ	e aer	ыту (sanu and gra	vei) vL =	v ei y 100S	e (ravell	ing, L = LOOSE (easy shove	mrig); IVID = I	meanath aens	e (nard shi	ovening); L	Dense (pi	$c_{N}(1)$; $VD = $	ery dense (hard p	noning)

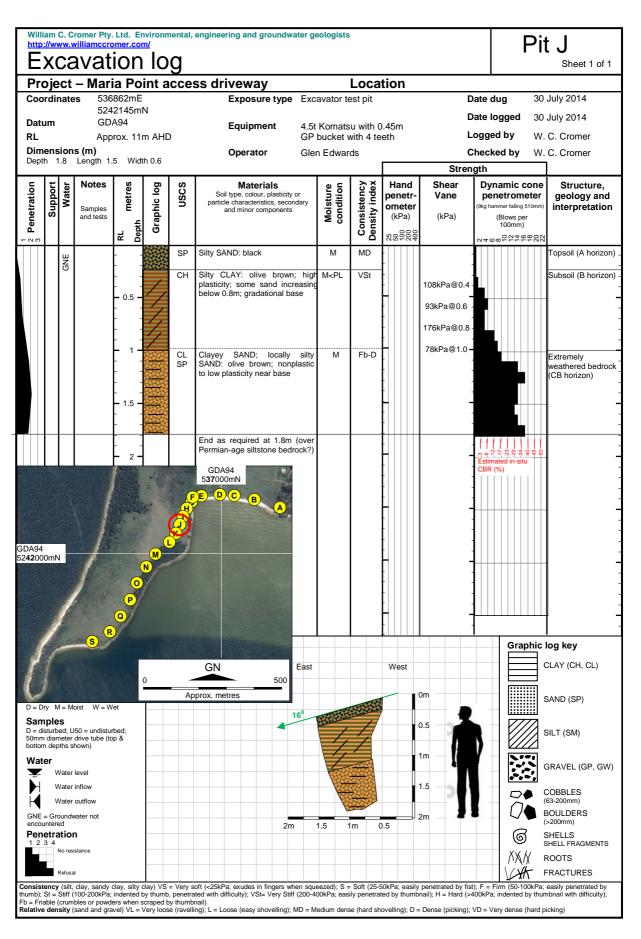
Willis	am C (romer Ptv	Itd F	vironn	nontal	engineering and ground	water o	eologists						
http:	<u>//www.</u>	williamccr	omer.co	<u>m/</u>		engineering and ground	water g	cologists					Pi	t D
		avat			<u> </u>									Sheet 1 of 1
	_				cce	ss driveway			Loca	tion				1 1 0011
Cool	rdinat		6998mE 12214m			Exposure typ	e Exc	cavator te	est pit			Date dug		July 2014
Datu RL	Im		A94		n	Equipment		t Komats				ate logg .ogged b		July 2014 C. Cromer
	ensio	Ap 1s (m)	orox. 1.5		D	Operator		bucket v n Edwar		em		Checked		C. Cromer
Depth	n 1.5	Length 1	.2 Wid	th 0.6		•••••					Strer			
u	upport Water	Notes	ser	og	nscs	Materials		ire on	lex dex	Hand	Shear	-	nic cone	Structure,
Penetration	Support Water	Samples	metres	Graphic log	ns	Soil type, colour, plastic particle characteristics, see and minor componer	condary	Moisture condition	Consistency Density index	penetr- ometer	Vane		falling 510mm)	geology and interpretation
Pene	"	and tests	RL Depth	Grap				Š S	Cons ensit	(kPa)	(kPa)		ws per)mm)	
~ ∩ 0			RL Dep	3333	0.0	OAND: dedu warm 6				25 50 200 200 400		98642	5288542 2288642	Organic sand
					SP	SAND: dark grey; fi grained		D	L					Beach sand
					SP	SAND: beige; fine-med g shelly horizon near	0.5m;		MD	-				-
			- 0.5 -	00		abundant shells below some thin lenses of black		М		-	-	-		_
								M-W				-		-
				00				W		-				-
			- 1-	000										-
				000						-				-
				80	СН	Sandy CLAY: dark olive g	grey	M<>PL	St	-	100kPa@1.5m	-		Estuarine clay
						End as required at 1.5 collapsing below 0.8m	m. Pit						848	-
		The sea	Con all	1.00	- and	GDA94				-		Estimated CBR (%)		-
					-	537000mN				-				-
				-	। म					-				-
					ð	and the second sec	2			-		-		-
GDA94					K					-				_
52 42 000)mN			M N	2					-				-
			0							-				-
			0 P							-	-	-		_
	1		Q							-				-
						telling manpassing				-		$\frac{1}{2}$		-
J	1	11-01					8			-	.	-		-
			1.50	0	-	GN 500							Graphic	log key
U					Ap	prox. metres							(CLAY (CH, CL)
0.	.5m						/est			East				
Mois		1oist W = W	lot								0m			SAND (SP)
Sam	ples								5 0 75		0.5		········· 7777	
50mm		J50 = undistu r drive tube (te										R		SILT (SM)
Wate	•	snowny				Collapsing		0000			1m —	V — i		
		r level						00 0	000					GRAVEL (GP, GW)
		r inflow r outflow									1.5			COBBLES 63-200mm)
	= Ground	water not					_		_		2m			BOULDERS >200mm)
	etratio	n					2m	1.5 1	m C).5			ଜ :	SHELLS
123		sistance		\vdash								+	vy u	SHELL FRAGMENTS
	Refus	al		\vdash										RACTURES
thumb); \$	St = Stiff	(100-200kPa	indented l	by thumb	, penetra	oft (<25kPa; exudes in fingers tted with difficulty); VSt= Very S	when squ Stiff (200-4	ueezed); S = 400kPa; easi	Soft (25-5 ly penetrat	0kPa; easily ted by thumb	penetrated by fis nail); H = Hard (>	t); F = Firm (400kPa; inde	(50-100kPa; ented by thur	easily penetrated by nbnail with difficulty);
Fb = Fria Relative	ible (crur density	nbles or powo (sand and gra	ers when s avel) VL =	scraped b Very loos	by thumb se (ravell	nail) ng); L = Loose (easy shovelling	g); MD = N	ledium dens	e (hard sh	ovelling); D =	Dense (picking);	VD = Very de	ense (hard p	icking)

http:	://w\	ww.w	villiamccro	mer.co	<u>m/</u>		engineering and ground	iwater g	eologists				- F	Pit E
E	X	Ca	ivat	ion	ı lo	g								Sheet 1 of
						<u> </u>	ss driveway			Loca	tion			
Coo			s 536	915mE			Exposure typ	be Exc	cavator te	est pit		C	ate dug	30 July 2014
Datu	ım			2205m A94	N		Equipmont	4 5	t Komoto	u with 0	45m	0	ate logged	30 July 2014
RL				rox. 3m	n AHD		Equipment		t Komats bucket v			L	ogged by	W. C. Cromer
			s (m) Length 1.	2 Wid	th 0.6		Operator	Gle	en Edwar	ds		c	hecked by	W. C. Cromer
Depli			-		1 0.0		1		-			Stren	gth	
² Penetration	Support	Water	Notes Samples and tests	RL metres Depth	Graphic log	nscs	Materials Soil type, colour, plastic particle characteristics, se and minor componen	condary	Moisture condition	Consistency Density index	Hand penetr- ometer (kPa)	(kPa)	Dynamic co penetromet (9kg hammer falling 51 (Blows per 100mm)	ter geology and omm) interpretatio
						SP	SAND: dark grey; f	ine-med	м	L-MD	-			Organic sand
					0.0 0 0.0 0 0.0 0	SP	grained SAND: beige; fine-med shelly horizon near 0. 0.9m; abundant sub-rou rounded quartzite peb 50m below1m	5m and nded to		MD				Beach sand
					00	СН	CLAY: olive green		M<>PL	St		112kPa@1.5m		Estuarine clay
A94 12000			R		N	TT-S	End as required at 1.5m.						Estimated in-situ CBR (%)	9 G
				and and	0		GN						Cron	
	F				5	Ar	prox. metres	í 📃						hic log key
							•							CLAY (CH, CL)
Nois D = Dr	ry N	r e 1 = Mo	vist W = W	et			ν	Vest			East	0m		SAND (SP)
50mm	sturb dian	ed; U	50 = undistur drive tube (to nown)	rbed; p &					000 000	9 00 10 0		0.5		SILT (SM)
Nate		Vater	evel						0.00	000		1m		GRAVEL (GP, GV
Ā		Vater							<u> 10 - 20</u>			1.5		COBBLES
H	v	Vater	outflow											(63-200mm)
GNE :			ater not					2m	1.5 1	m C).5	2m 🗕 🚪		BOULDERS (>200mm)
Pen 1 2 3	34	atior											୍ ଚ	SHELLS SHELL FRAGMENTS
		No resi	stance										XX/X	ROOTS
									_				1 1 7 1 1	

						nental,	engineering and groundwater g	eologists						
			illiamccro			a							PI	t F
							ss driveway		Loca	tion				Sheet 1 of 1
	_	nate		881mE		cce	Exposure type Exc			tion	Da	ate	dug 30	July 2014
			524	2186m									5	July 2014
Dat RL	um			A94 rox. 4m				t Komats bucket v						C. Cromer
Dim			s (m)				-	n Edwar		our				C. Cromer
Dept	th 2	2.0	Length 1.	5 Wid	th 0.6		•				Streng		-	
ы	ti	ter	Notes	.es	og	SS	Materials	on on	icy lex	Hand	Shear		namic cone	Structure,
Penetration	Support	Water	Samples	metres	Graphic log	nscs	Soil type, colour, plasticity or particle characteristics, secondary and minor components	Moisture condition	Consistency Density index	penetr- ometer	Vane	pe	enetrometer	geology and interpretation
ene	S		and tests	Ę	èrap			l N N	onsi nsit	(kPa)	(kPa)		(Blows per 100mm)	-
− α∞				RL Depth	0				υē	25 50 200 400		040	28884423°°	
						SP	SAND: dark grey; fine-med grained, with light grey sand	м	MD		-			Aeolian sand _
							patches in surface 0.4m; buried leaf at base			+				-
				- 0.5 -							_			-
														-
										-	-			-
				- 1-		SP	SAND: grey; fine-med grained;	-		[-]	4			-
						5P	SAND: grey; line-med grained;			+				-
											-			-
				- 1.5 -		/	Sandy SILT: dark grey; rapid	 м-w			-			-
							dilatancy				1			-
						SP	SILTSTONE: yellowish grey brown; mod fractured; slightly	W	S	-				-
				- 2 -		/	weathered Excavator refusal at 2.0m on							Bedrock
							Permian-age siltstone bedrock dipping c4-5 deg to 150 deg			F	1			-
							True							-
					-		GDA94 5 37 000mN				-			-
			4			G	DC B			+				-
						A	A							-
						K)					4			-
GDA94					-M-						-			-
52 42 00	Jomi	N	1	(N					-]			-
				0	1					\mathbf{F}				-
		1	_s R	P									Graphic	log kev
				Q			South	west		Northea	st			CLAY (CH, CL)
			_S				State Transmission							
ļ					A LOSS		GN				0m			SAND (SP)
12					0	-	500							
						Ap	prox. metres				0.5		5	SILT (SM)
		oths s	nown)	F							1m —			
Wat		Nater	evel								*			GRAVEL (GP, GW)
Ē	١	Nater	inflow								1.5			COBBLES
			outflow					////						63-200mm) BOULDERS
enco	unter	ed	ater not				2m	1.5	lm ().5	2m — 🖉 🖣			>200mm)
Pen 1 2	34													SHELLS SHELL FRAGMENTS
		No resi	sidnce											ROOTS
Consis		Refusa		lav eilte		- Vor	oft (<25kPa; exudes in fingers when squ	10070d). C	Soft (25 1	OkPa: casili	r penetrated by ficth	F	1 VAIL	RACTURES
thumb); Fb = Fri	St = able	Stiff ((crum	100-200kPa; bles or powde	indented l ers when s	by thumb craped b	, penetra y thumb	ted with difficulty); VSt= Very Stiff (200-4 nail)	100kPa; eas	ily penetra	ted by thumb	nail); H = Hard (>40	00kPa	a; indented by thun	nbnail with difficulty);
Relativ	e der	nsity (sand and gra	vel) VL =	Very loos	e (ravelli	ng); L = Loose (easy shovelling); MD = N	Aedium dens	e (hard sh	ovelling); D =	= Dense (picking); V	D = ۱	/ery dense (hard p	icking)



Will	iam	C. C	omer Ptv	I td. Fr	vironr	nental.	engineering and	l groundwater o	eologists						
http	://w	ww.v	illiamccro	omer.co	<u>n/</u>		engineering une	groundhator	jeologiste					Pi	t G 🛛
ΙE	X	Ca	ivat	ion	10	g									Sheet 1 of 1
Pr	oje	ect	– Mari	ia Po	int a	cce	ss drivew	ay		Loca	tion				
Cod	ordi	nate		884mE 2194m			Expos	ure type Ex	cavator to	est pit			Date	dug 30	July 2014
Dat	um			A94	N		Equip	ment 45	t Komats	u with () 45m		Date I	logged 30	July 2014
RL			Арр	rox. 3m	AHD		-4b		bucket				Logge	edby W.	C. Cromer
			s (m) Length 1.	5 Widt	h06		Opera	tor Gle	en Edwar	ds			Chec	ked by W.	C. Cromer
	_		-			1			1				ength		
tion	Support	Water	Notes	metres	log	nscs		erials our, plasticity or	Moisture condition	Consistency Density index	Hand penetr-	Shear Vane		namic cone enetrometer	Structure, geology and
Penetration	Supl	×	Samples	me	Graphic log) S	particle characte and minor	eristics, secondary components	oist	siste ty in	ometer (kPa)	(kPa)		ammer falling 510mm)	interpretation
Pen			and tests	R L Depth	Gra				≥ ೮	Cons	ì í	(KFA)		(Blows per 100mm)	
- α ω				RL Dep							25 50 100 400		040	00399479000 00399479000	Aeolian sand
						SP	SAND: dark gre med grained	y to black; fine-	М	MD					Aeolian sand
													-		-
				- 0.5 -									_		-
															-
															-
				- 1 -							-		-		
															-
															-
				- 1.5 -					M-W		-				-
					000	SP		n-grey; >50%		L	-				Beach sand
					00		rounded siltston End as require						Estin	은 은	
				- 2 -			beach sand				-		CBR	. (%)	-
				Carles.	100	-	GDA94	- A.							-
					: 9		537000mN	. 100					-		-
											-				-
						J		The S			-				-
CDAO			標		(K I					-				-
GDA94 52 42 00		N				2							1		-
			/		N						-				-
			1					Self-self-			-		-		-
		1		Q									1		-
	1		R	7								L	1		-
		110	R											Graphic	log key
P				1	2		GN								CLAY (CH, CL)
					0	-		500 No	rth		Sout				
D = I	Dry 1	M = M	ist W = W	et		Ap	prox. metres					0m			SAND (SP)
Sar	nple	es										0.5			
50mr	n dia	meter	50 = undistu drive tube (to												SILT (SM)
Wa		pths s	iown)									1m —	Υ.		
T		Water	evel										Λ.		GRAVEL (GP, GW)
		Water								8		1.5			COBBLES
H			outflow							27		2m			(63-200mm) BOULDERS
enco	unter	ed	ater not					2m	1.5	lm ().5	2m — •			(>200mm)
	34														SHELLS SHELL FRAGMENTS
		No resi	stance											XXXX	ROOTS
		Refusa													FRACTURES
thumb)	St =	Stiff (00-200kPa;	indented l	by thumb	, penetra	ted with difficulty); V								easily penetrated by nbnail with difficulty);
Relativ	able e der	nsity (oles or powd sand and gra	ers when s ivel) VL = '	Very loos	se (ravell	nail) ng); L = Loose (easy	shovelling); MD = I	Medium den	se (hard sh	ovelling); D =	Dense (pickin	g); VD = \	/ery dense (hard p	icking)



			romer Pty.			nental,	engineering and groundwat	er geo	logists						Pi	t I
E	X	Ca	avat	ion	lo	a									• •	Sheet 1 of 1
_	_					<u> </u>	ss driveway			Loca	tion					
	-	inate		867mE			Exposure type	Excav				D	ate	dug	30	July 2014
Dat	tum			2156ml A94	N							D	ate	logged	30	July 2014
RL			-	nox. 8m	AHD					u with C vith 4 te		L	ogg	ed by	W	. C. Cromer
			s (m)						Edwar			c	hec	ked by		C. Cromer
Dep	oth	2.0	Length 1.	.5 Widt	h 0.6		-					Stren	gth			1
u	t	er	Notes	es	og	S	Materials		re on	cy ex	Hand	Shear		ynamic		· · ·
Penetration	Support	Water	Samples	metres	Graphic log	nscs	Soil type, colour, plasticity or particle characteristics, seconda and minor components	ary	Moisture condition	Consistency Density index	penetr- ometer	Vane		enetron hammer fallin		geology and interpretation
ene	Ō	'	and tests	÷	irapl				Mo	onsi nsity	(kPa)	(kPa)		(Blows p 100mm	per n)	
- ∾ ∾	,			RL Depth	9					ŭ ē	250 200 100 100 100 100 100		04	°°664		
		GNE				SP	SAND: dark grey		D-M	MD	-					Topsoil (A1 horizon)
		σ									-					
				- 0.5 -	/ /	SP	Silty SAND: light yellowish gr hardsetting	ey;	D	Fb-D	-					Topsoil (A2 horizon)
				- 0.3 -	1		-				-					-
					20	0				10	-					
						CL	Gravelly CLAY, CLAY: brown; mod to high plast	icity;	/I≺PL	VSt	-					Subsoil (B horizon) _
				- 1-	, <mark>,</mark>		gravel is angular silts fragments; occasional clast				-					1 -
							50mm					DCP refusal on clasts				
					▲									N P 0 0 2		-
				- 1.5 -	N	SP	Gravelly SAND: olive brow		D-M	Fb-D-	-			mated in-si R (%)	itu	
					1	loc	trace clay; nonplastic to I		D-IVI	VD						
						GW	plasticity				-	-				-
							End as required at 2.0m Quaternary colluvium (or				-					-
							Permian-age siltstone bedrocl				-					-
					1	a market	GDA94 5 37 000mN				-					-
					:	G					-					-
				C STORE		R	A				-					
						X					-					
GDA94	4					y 1					-					
52 42 0	00m	N	1	0	N N	2					-					
				Service -							-					
			S	P							-		ļ			-
		1		Q										Gra	aphic	log key
		(Alle	R	y				- act			West			ΗĒ	_	CLAY (CH, CL)
			_ <mark>s</mark>					ast			West					
K	Carlos						GN					0m				SAND (SP)
				()		500									
			50 = undistui			Ap	prox. metres 24	•	1	1		0.5			\square	SILT (SM)
		meter pths s	drive tube (to nown)	op &						1			D			- (-)
Wa									2000			1m — [1		<u> </u>	GRAVEL (GP, GW)
1		Water Water										1.5 —		, i	••,	,
			outflow							БТ		2		5		COBBLES (63-200mm)
			ater not			_						2m _ 📲		L		BOULDERS (>200mm)
Pei		atio	ı			_	2m	1.5	5 1	m C).5			6	ส	SHELLS
12	234	No res	stance			_								X X		SHELL FRAGMENTS
		Refusa	I		\vdash										<u> </u>	FRACTURES
		y (silt,	clay, sandy				oft (<25kPa; exudes in fingers wher								100kPa;	easily penetrated by
Fb = F	riable	(crum	bles or powd	ers when s	craped b	y thumb	ated with difficulty); VSt= Very Stiff (2 nail) ing); L = Loose (easy shovelling); MI				,				,	
Neidul	,e ue	naity	sana ana gra		s er y 100S	c (raveli	ing), c = couse (easy shoveling); Mil		um dens	⊂ (naiù sh	svenny), D =	- Dense (picking);	• D =	very ueris	c (naid)	Jonny)

Will	iam	0.0	romer Ptv	Ltd En	vironn	nental	engineering	and ground	lwater o	eologists							
http	://w	ww.	villiamccro	mer.cor	<u>n/</u>		engineering		iwater g	cologists						P	it K
LF	X	<u>C</u> 2	avat	ion	10	g											Sheet 1 of 1
	_					cce	ss drive	-			Loca	tior	า				
Cod	ordi	nate		835mE 2090ml			Exp	oosure typ	De Exc	cavator to	est pit				ate o	-	0 July 2014
Dat	um		GD		•		Equ	uipment	4.5	t Komats	su with ().45m	۱				0 July 2014
RL				rox. 18r	m AHE)			-	bucket		eth					V. C. Cromer
			s (m) Length 1.	2 Widt	h 0.6		Ор	erator	Gle	en Edwar	n Edwards				Checked by W. C. Cromer Strength		
- c	- -	5	Notes	s	6	6		laterials			×<	На	nd	Stren	ř	namic con	e Structure,
Penetration	Support	Water	110103	metres	Graphic log	nscs	Soil type	, colour, plastic racteristics, se	ity or condary	Moisture condition	tenc inde	pen	etr-	Vane	pe	netromete	r geology and
netr	ß	[Samples and tests		aphi		. and m	inor componer	nts	Mois	nsis sity	ome (kF	eter Pa)	(kPa)	(9kg h	ammer falling 510m (Blows per	^{m)} interpretation
900 −00				RL Depth	ē						Consistency Density index	22 20	400 400		0.57.0	100mm) 299779 ₈₀	22
	\vdash	ш				SP	Silty SAND	: black; gra	dational	M-W	L-MD	-					Topsoil (A horizon)
		GNE			19444	СН	base CLAY: oliv	e arev-brov	wn: hia	h M>PL	S-F			44kPa@0.2			Subsoil (B horizon)
						-	plasticity; tra							60kPa@0.4			
				- 0.5 - 						-	St-Vst	-		200kPa@0.6			
								ubhorizontal	mod					130kPa@0.8			
				- 1 -			fractured; sli Excavator r			<u> </u>					ς α θ	23 23 45 45	Siltstone bedrock
				[]			Permian-age	e siltstone be	edrock			-			Estim CBR	ated in-situ (%)	
															1		
				 - 1.5 -							1439.108	-	972.53			1000	GDA94
																5	37000mN
														A State	14. S	FE H	DC B A
														Aller .	1	R	- MO
																K	
											3DA94 52 42 000r	nN			M		
													1		N		
													/	P			
												1		Q Q R			
				- 3-								1		R			
											1		(s)			
											M			un dia di		(GN
				- 3.5 -											0		500
					1		L				8	-					<. metres
		V and	0.5m													Graphi	c log key
		H sca	e					E	ast			We	st				CLAY (CH, CL)
(Moi).5r													0m			
			oist W = W	et					17 ⁰	0.000					-		SAND (SP)
	isturt	oed; L	150 = undistur							and the second				0.5	-		SILT (SM)
50mr botto	n dia n de	meter pths s	drive tube (to hown)	р&											D		
Wa														1m — [1		GRAVEL (GP, GW)
		Nater Nater	inflow											1.5			
			outflow											2	-		COBBLES (63-200mm)
GNE enco			vater not						2m	1.5	1m ().5	!	2m — 🚪			BOULDERS (>200mm)
Per		atio	n		\vdash					1.0						ି	SHELLS SHELL FRAGMENTS
		No res	istance													XXX	ROOTS
		Refusa	al .													1/1	FRACTURES
thumb):	St =	Stiff (100-200kPa;	indented b	by thumb	, penetra	ted with difficult										a; easily penetrated by numbnail with difficulty);
Fb = Fr Relativ	able e der	(crum nsity	bles or powde sand and gra	ers when s vel) VL = \	craped b /ery loos	by thumb se (ravelli	nail) ng); L = Loose (easy shovelling	g); MD = M	/ledium den	se (hard sh	ovelling	g); D =	Dense (picking);	VD = \	/ery dense (har	d picking)

10			<u> </u>	nomen Div	LAIL DO		tel	an all sections and array of		l - r l - t -							
ht	William C. Cromer Pty. Ltd. Environmental, engineering and groundwater geologists http://www.williamccromer.com/ Excavation log Sheet 1 of 1														t L		
E	=)	X(Ca	avat	ION	10	g										Sheet 1 of 1
P	ro	je	ct	– Mari	ia Po	int a	cce	ss driveway			Loca	tior	า				
Coordinates 536808mE 5242042mN								Exposure type Excavator test pit Date of							dug 30	July 2014	
Datum GDA94								Equipment	4.5	Komats	u with ().45m	n	0	ate	logged 30	July 2014
RL Approx. 20m AHD								-4		bucket v			•	L	ogg	ed by W.	C. Cromer
				s (m) Length 1.	2 Widt	h 0.6		Operator	Gle	n Edwar	ds					ked by W.	C. Cromer
	-			-							N 14		. 1	Stren	ĭ		
Penetration		Support	Water	Notes Samples and tests	metres h	Graphic log	nscs	Materials Soil type, colour, plasticit particle characteristics, seco and minor components	ondary	Moisture condition	Consistency Density index	Ha pen ome (kF	etr- eter	Shear Vane (kPa)	pe	ammer falling 510mm) (Blows per	Structure, geology and interpretation
5 ₽					RL Depth	ษั					S na	22 20	688 688		04	100mm) 000000000000000000000000000000000	
			GNE				SP	Sandy SILT: dark grey;		М	Fb-F	Ē					Topsoil (A horizon) -
			Ū			833333	СН	CLAY: grey brown;		M<>PL	VSt				1		- Subsoil (B horizon) -
						- 7	GC	plasticity; some gravel and SILTSTONE: yellowish	grey			Ē.		-	1		
							/	brown; subhorizontal; fractured; mod weathered	mod								Siltstone bedrock
								Excavator refusal at 0. Permian-age siltstone bec				-					-
					- 1-			·				Ē-		-	1		-
															ł		-
												-			ł		
												†	2012/12	12.2		G	- DA94
																	2000mN
															Sect.	E E	DC B
														All and a	-	A.	100
															2	N	
											GDA94 52 42 000	mN		A. A	—(M		
										İ	<u>, 12000</u>				N		
					- 2.5 -)/		
													1	P Q S			
												Y		Q			
					- 3-									R R			
												-					
														Standal Son	0	G	
					- 3.5 -						U				0	Approx.	500 metres
												12.0				Graphic	
	Γ		/ and														
			l sca	e				Ea	ist			We	st				CLAY (CH, CL)
	0. ois	5m)m			
				oist W = W	/et				13º								SAND (SP)
	amj = dis			150 = undistur	rhed [.]				13	A STATE			-	0.5			
50	mm (dian	neter	drive tube (to hown)											5		SILT (SM)
w	ate	er											1	m — [Y		GRAVEL (GP, GW)
			Vater														GRAVEL (GF, GW)
▎┦	H			inflow										.5 -)			COBBLES (63-200mm)
GI	NE =			outflow vater not										2m _			BOULDERS
en	cour	ntere						21	n	1.5 1	m (0.5					>200mm)
	2 3	34		istance													SHELLS SHELL FRAGMENTS
																	ROOTS
Con	siete	_	Refusa		clay eithy			oft (<25kPa; exudes in fingers v	hen sau	eezed). C -	Soft (25	50kPor	easily	penetrated by fire). E		FRACTURES
thum	b); S	St = S	Stiff (indented b	by thumb	, penetra	ated with difficulty); VSt= Very St									
Rela	tive	den	sity (sand and gra	ivel) VL = V	/ery loos	se (ravell	ing); L = Loose (easy shovelling)	; MD = N	ledium dens	e (hard sh	ovellin	g); D =	Dense (picking);	VD =	/ery dense (hard p	icking)

	William C. Cromer Pty. Ltd. Environmental, engineering and groundwater geologists <u>http://www.williamccromer.com/</u>														
			avat			a								T IVI Sheet 1 of 1	
						_	ss driveway			Loca	tion				
	_	nate	s 536	766mE 2001ml			Exposure type	Exc	avator te	st pit		Date	dug 30	July 2014	
Dat	um			A94	N		Equipment	4.5t	Komats	u with C).45m			July 2014	
RL Dim	nens	sion	Арр s (m)	rox. 21r	m AHE)			bucket v		eth	-		. C. Cromer	
			Length 1.	2 Widt	h 0.6		Operator	Glei	n Edwar	JS			Checked by W. C. Crome Strength		
uo	ort	ter	Notes	es.	og	S	Materials		e n	lex	Hand	Shear D	ynamic cone	,	
Penetration	Support	Water	Samples	metres	Graphic log	nscs	Soil type, colour, plasticity or particle characteristics, seconda and minor components	ary	Moisture condition	ister y inc	penetr- ometer	(9kg	hammer falling 510mm)	geology and interpretation	
Pene	ľ		and tests	RL Depth	Grap				C N	Consistency Density index	(kPa)	(kPa)	(Blows per 100mm)		
0 0 7				× ŏ		SP	Sandy SILT: grey brown;		D	Fb	25 2000 1000 1000 1000	N •	10002022000 10002020001	Topsoil (A1 horizon)	
		GNE				GM	Silty GRAVEL: grey;		D	Fb-D				Topsoil (A2 horizon)	
				- 0.5 -										-	
				- 0.5 -		GC		moc	M<>PL	VSt		DCP refusal on pebble		Subsoil (B horizon)	
					00	/		grey nod				ا مېنې Es		-	
	-			- 1 -	<mark></mark>	/	fractured; mod weathered Excavator refusal at 1.0m					CE	R (%)	Siltstone bedrock	
							stepped Permian-age siltst				-			-	
										10.045 P.040					
				- 1.5 - 									537	DA94 000mN	
												And the second	FE (DC B A	
				- 2-								1.	A	and the second	
									G	DA94		15 6	L K		
										242000m	nN	N			
				- 2.5 -								0			
											1	P			
												Q			
										1		Q R S		1 DE TROUBLE	
										H	1237		GI	N	
				- 3.5 -								0		500	
			0.5		1					Y			Approx. Graphic		
		V and H scal					East				West			CLAY (CH, CL)	
(l).5n										wesi				
Moi	stu	re	oist W = W	ot								0m		SAND (SP)	
San	nple	es					13	-	H			0.5			
50mr	n diar	neter	I50 = undistur drive tube (to hown)											SILT (SM)	
Wa			. ,									1m — 🚺		GRAVEL (GP, GW)	
		Vater Vater	level inflow									1.5			
Ĥ			outflow									21	+	COBBLES (63-200mm)	
enco	unter	ed	vater not				2m		1.5 1	m ().5	2m — 📲 📕		BOULDERS (>200mm)	
Per 1 2	34	atio												SHELLS SHELL FRAGMENTS	
			istance											ROOTS	
Consis	tency	Refusa	clay, sandy	clay, silty o	lay) VS	= Very s	oft (<25kPa; exudes in fingers when	n squ	eezed); S =	Soft (25-5	50kPa; easily	r penetrated by fist); F	= Firm (50-100kPa	FRACTURES easily penetrated by	
thumb); Fb = Fr	St = iable	Stiff ((crum	100-200kPa; bles or powd	indented b ers when s	y thumb craped b	, penetra by thumb	ted with difficulty); VSt= Very Stiff (2	200-4	00kPa; easi	y penetrat	ted by thumb	nail); H = Hard (>400k	Pa; indented by thu	mbnail with difficulty);	
	- 401		,-ana ana gia			- 1.01000		141		- (- · · ·····y), D =	_ 51100 (proting), VD -	. 57 00100 (1010)		

ht	tp:	//w\	ww.v	villiamccr	omer.co	<u>m/</u>		engineering and groundwate	r geologists	,			Pi	t N
L		X(22	avat	lon	10	<u>g</u>							Sheet 1 of
-		-					cce	ss driveway		Loca	tion			
C	00	rdiı	nate	-	6726mE 42961m			Exposure type	Excavator to	est pit			0	July 2014
		ım			A94				.5t Komats					July 2014
וא הו		one	ion	Ap։ s (m)	orox. 23	m AHC)		GP bucket		eth			C. Cromer
				Length 1	.2 Wid	th 0.6		Operator	Glen Edwar	us		Strei		C. Cromer
5		ort	er	Notes	es	ő	ŝ	Materials	e c	e c	Hand	Shear	Dynamic cone	Structure,
tratio		Support	Water	Samples	metres	hic le	nscs	Soil type, colour, plasticity or particle characteristics, secondar and minor components	Moisture condition	sten / ind	penetr- ometer	Vane	(9kg hammer falling 510mm)	geology an interpretation
Penetration		S		and tests		Graphic log			Cor Mo	Consistency Density index	(kPa)	(kPa)	(Blows per 100mm)	
	3				RL Depth		00			ပီ Fb	25 50 200 4000		0400000498000	
			GNE			23	SP GM	Sandy SILT: grey brown; Silty GRAVEL: grey;	D	Fb-D	-			Topsoil (A1 hori Topsoil (A2 hori
					Ŀ	22					-		1	
					- 0.5 -								-	
						\mathbb{Z}		plasticity	nod M<>PL	VSt	-			
							GC/	brown; subhorizontal; m	od				1	Subsoil (B horiz
					<u></u>		/	fractured; mod weathered Excavator refusal at 1.0m					1	Siltstone bedro
					1 :			stepped Permian-age siltsto bedrock	ne		<u> </u>		1	
					- 1.5 -									DA94
					- 1.5 -								537	000mN
												ARRE	FE (DC B
					- 2 -							All	A	100
													K	
										SDA94 52 42 000n	ηN		N	
					- 2.5 -									
												P	1	
					È .						1	Q		
					- 3-							Q R		
										5				
												San Law	0 GN	
					- 3.5 -					U			Approx. I	
				0.5m	I						•••••		Graphic	log key
			/ and I scal					East			West			CLAY (CH, CL)
	0	.5n	n											
		stur		oist W = V	Vet					m		Dm		SAND (SP)
Sa	am	ple	s					130	H	V N		0.5		
50	mm	dian	neter	l50 = undistu drive tube (t hown)						NA				SILT (SM)
	at			,							1	Im —		GRAVEL (GP, G
			Vater									5		UNAVEL (GP, G
Water inflow Water outflow												.5		COBBLES (63-200mm)
GNE = Groundwater not												2m 🗕 🚪		BOULDERS (>200mm)
encountered Penetration 1 2 3 4								2m	1.5	1m ().5		୍ ଜ	SHELLS
	2 :		No res	istance										SHELL FRAGMENT
			Refusa	al I										FRACTURES
-	eiet.	encv	(silt.	clay, sandy	clav, siltv	clay) VS	= Very s	oft (<25kPa; exudes in fingers when ated with difficulty); VSt= Very Stiff (20	squeezed); S =	= Soft (25-5	50kPa; easily	penetrated by fis	st); F = Firm (50-100kPa;	easily penetrated b

_	M/:02	am	<u> </u>	romor Bt	Ltd. E	nviron	nontol	engineering and groundw	inter c	ologista						
	http	://w	ww.v	villiamccro	omer.co	<u>m/</u>		engineering and groundw	rater g	SOLOGISTS					Pi	t O
				avat			<u> </u>									Sheet 1 of 1
		-					icce	ss driveway			Loca	tion				
l '	Coo	rdi	nate		698mE			Exposure type	e Exc	avator te	est pit			ate dug		July 2014
	Dati	um			A94			Equipment	4.51	Komats	u with C).45m		ate logg		July 2014
	RL				rox. 21	m AH[0		-	bucket v		eth		ogged b		. C. Cromer
				s (m) Length 1.	2 Wid	lth 0.6		Operator Gler		n Edwar	ds			-		. C. Cromer
⊢	<u> </u>	+	-	Notes	s	5	6	Materials		<u>م</u> د	> ×	Hand	Stren Shear	ĩ	ic cone	Structure,
	Penetration	Support	Water	Samples	metres	Graphic log	uscs	Soil type, colour, plasticity particle characteristics, seco and minor components	ndary	Moisture condition	Consistency Density index	penetr- ometer	Vane (kPa)	penetr (9kg hammer f	ometer falling 510mm	geology and
	Pen			and tests	R L Depth	Gra				≥ö	Con	(kPa)	(KF a)	100	ws per)mm)	
-	0 M		-		Pep RL		SP	Silty gravelly SAND: black	<	м		25 25 2000 4000		040000	146608	1 Fill?
			GNE			00	U1	City gravely crite. Shad	·							Topsoil (A1 horizon)
												+				-
					- 0.5 -		GM	Silty GRAVEL: grey; Gravelly CLAY: brown;		D M<>PL	Fb-D		-			Topsoil (A2 horizon)
								plasticity SILTSTONE: yellowish	grey	IVI<>PL	VSt					-
							/GC/	brown; subhorizontal; fractured; mod weathered	mod			-				Subsoil (B horizon)
Γ					<u> </u>			Excavator close to refu				-				- Sillstone bedrock
								1.0m on Permian-age sil bedrock; dip 3 deg to 18				-		.ଙ୍କୁ କ୍ରି କି କି କ୍ରି Estimated i	នុ ភី ម ម ភ n-situ	-
True						Irue			141527/3	-		CBR (%)		- iDA94		
- 1.5 -													537	7000mN		
										ARE	240	FE	DC B			
					- 2-	-							and a second	E	L.	A
					F 2 -									ĸ		
											DA94 2 42 000n	nN	13			
						-					2420001			N		
					- 2.5 -					1 CONTRACTOR						
												1	Р			
					- 3-	1							Q			
											1	(P Q R			a management
											1	C. Lawrence			0	
													Shirk Ser	0	G	N500
					- 3.5 -						V				Approx.	metres
Г				0.5m											Graphic	log key
L			/ and H scal	e				Ea	st			West				CLAY (CH, CL)
L	C	.5n	n													
	Moi			oist W = W	lot					Ţ)m			SAND (SP)
	San				el						-		0.5			
	D = di 50mm	sturb dian	oed; U neter	50 = undistur drive tube (to									0.5			SILT (SM)
	bottom depths shown) Water								4			1m —	/ _	\/// \' "",		
	wat Y		Vater	level									- 4	_		GRAVEL (GP, GW)
	H	v	Vater	inflow									1.5 -5			COBBLES
	H			outflow												(63-200mm) BOULDERS
	encou	untere	ed	vater not				21	n	1.5 1	m ().5	2m — 🖉		~	(>200mm)
	Pen 1 2	34														SHELLS SHELL FRAGMENTS
	No resistance													ROOTS		
	Refusal Consistency (silt, clay, sandy clay, silty clay) VS = Very soft (<25kPa; exudes in fir					off (-25kDo: ovurden in finn		acred': C	Poft (05 7		papatrated by f			FRACTURES		
thu	ımb);	St =	Stiff (clay, sandy (100-200kPa; bles or powd	indented	by thumb	, penetra	ated with difficulty); VSt= Very Sti	ff (200-4	eezed); S = 00kPa; easi	SUIT (25-5 ly penetrat	ted by thumb	penetrated by fis nail); H = Hard (>	u, r = Firm (400kPa; inde	nted by thu	, easily penetrated by mbnail with difficulty);
Re	lative	den	sity (sand and gra	ivel) VL =	Very loos	se (ravell	ing); L = Loose (easy shovelling);	MD = N	ledium dens	e (hard sh	ovelling); D =	Dense (picking);	VD = Very de	ense (hard	picking)

Proj Coord Datum RL Dimen Depth	jec dina n 1.2	ct ·	s 536			<u> </u>									
	dina n nsi 1.2		s 536		int a										Sheet 1 of
Datum RL Dimen Depth	n nsi 1.:	ate		661mE		cce	ss driveway			Loca	tion				
inen epth	nsi 1.:		024	1846ml			Exposure type	Exca	vator te	st pit			Date	dug 31	July 2014
	1.:		GD		•		Equipment	4.5t k	Komats	u with C).45m				July 2014
	1.:	Dimensions (m)			m AHC)	GP bucket with 4 teeth						C. Cromer		
			s (m) Length 1.	2 Widt	h 0.6		Operator	Glen	Edware	ds				•	C. Cromer
	21	2	Notes	Ś	D	S	Materials		đΕ	<u> </u>	Han		rength	ynamic cone	Structure,
	odd	Water		metres	Graphic log	nscs	Soil type, colour, plasticity or particle characteristics, seconda		Moisture condition	tenc inde	pene	tr- Vane	p	enetrometer hammer falling 510mm)	geology an
	2		Samples and tests	_	aph.	-	and minor components		Moi	nsis sity	(kPa			(Blows per 100mm)	interpretatio
100				RL Depth	Ģ				-	Consistency Density index	22 20 100	400	20	1000000) 1000000	
	ļ	ENE CNE			D _D	SP	Silty gravelly SAND: black; t glass	race	М	MD			-		Fill
	Ċ	5			v 7		giass						E		
					(A)								_		
						GM	Gravelly SILT: light grey; so sand; nonplastic; occasio	onal	D	Fb-D			-		
'							siltstone clasts to 0.3m; also,				$\left \left \right \right $				
					H		brown; subhorizontal; r	grey nod			[_				Siltstone bedro
					Z		fractured; mod weathered						-	8 4 4 8 8 8 4 4 9 9 4 4 8 8 8 7 4 9	
							End as required at 1.2m in with stepped siltstone bedr				$\left \left \right \right $		Es CE	timated in-situ R (%)	
				 - 1.5 -			exposed on upslope side of p			1439/18	[DA94
												唐			000mN
													ant.	FE (DC B
				- 2 -									· Alt	A	
										DAA4				(K)	
										DA94 2 42 000n	nN				Bridge St.
				- 2.5 -								1			
													ลั เ		
											1	a R S			
				- 3-							1	R			
												S			
													-	GN	١
				- 3.5 -					80.08				0	Approx.	motros
			0.5							Se .	12.54			Graphic	
		and scale	0.5m				East				West				CLAY (CH, CL)
0.5		Jaio	-				East				west				(OII, OE)
loistu	ure							89				0m			SAND (SP)
= Dry ampl			ist W = W	et						-			2		
= distur)mm dia	urbeo iame	d; U5 eter c	50 = undistur drive tube (to	bed; p &					1 St	2		0.5			SILT (SM)
ottom de	depth							K	$\langle \rangle$	1		-1m			
/ater		ater l	evel									┦──┤╸╸			GRAVEL (GP, G
H	Wa	ater i	nflow									-1.5			COBBLES
Water outflow												63-200mm) BOULDERS			
ncounte	ered	1	ater not				2m	1.	.5 1	m (0.5	2m2			>200mm)
2 3 4	4														SHELLS SHELL FRAGMENT
	No resistance												ROOTS		
	_	afusal		1			oft (<25kPa; exudes in fingers wher			0.0					RACTURES

	William C. Cromer Pty. Ltd. Environmental, engineering and groundwater geologists http://www.williamccromer.com/ Pit Q													
			avat	-	_	q								Sheet 1 of 1
						_	ss driveway			Loca	tion			
Coo	rdi	nate		648mE			Exposure t	ype Exc	avator te	est pit		Da	ite dug 31	July 2014
Date	um			A94	N		Equipment	4.5t	Komats	u with ().45m			July 2014
RL Dim	one	sion	Арр s (m)	orox. 16	m AHE)	0							. C. Cromer
			Length 1.	.2 Widt	h 0.6		Operator	n Edwards				Checked by W. C. Cromer Strength		
۲.	ť	er	Notes	es	bo	ş	Materials		e u	ex cy	Hand	Shear	Dynamic cone	Structure,
Penetration	Support	Water	Samples	metres	Graphic log	nscs	Soil type, colour, pla particle characteristics, and minor compo	secondary	Moisture condition	Consistency Density index	penetr- ometer	Vane	penetrometer 9kg hammer falling 510mm	geology and interpretation
Pene	S		and tests	RL Depth	Grap				ĞĞ	consi	(kPa)	(kPa)	(Blows per 100mm)	
~ ∩ m				Der R		SP	Gravelly SILT:	black;	м	MD	25 100 100 100		004080000000000000000000000000000000000	t Fill
		GNE				35	gradational base	DIACK,	IVI	MD		-		-
					D Y							-		-
				- 0.5 -			Gravelly SILT: light gr sand; with angular		D	Fb-D		-		-
					12	GC	clasts to 0.15m					DCP refusal on clast-		-
			- 1-		GC			M	1/01				- 0	
				7		Gravelly CLAY: oliv mod plasticity		M>PL	VSt		-	5 6 1 1 1 1 1 1 1 1 1 1	Subsoil (B horizon)	
							End as required at 1.2 Permian-age siltstone						Estimated in-situ CBR (%)	-
- 1.5 -														DA94 '000mN
											FE	DC B		
										A States	A	A		
									10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	K				
										DA94 2 42 000n	nN	N	M	
				- 2.5 -								0	1	
												P		
												0		
				- 3-						1	s	R		NATIONALLA
										1	- interest		G	N
				- 3.5 -								0	0	500
									2	V			Approx.	
		V and	0.5m											log key
	.5n	H scal	e					South			North			CLAY (CH, CL)
Moi	stui	re									01	n		SAND (SP)
D = D San			oist W = W	/et						D	0.			
50mm	ı diar	meter	150 = undistu drive tube (to								0.			SILT (SM)
	bottom depths shown) Water									4	-11	n — (
Water level													GRAVEL (GP, GW)	
	Water outflow										-1.			COBBLES (63-200mm)
	GNE = Groundwater not encountered							2m	1.5 1	m (21	n 22		BOULDERS (>200mm)
Pen	Penetration							2111					ି	SHELLS SHELL FRAGMENTS
	No resistance											× 11	ROOTS	
Consist	Refusal Consistency (silt, clay, sandy clay, silty clay) VS					= Verv s	oft (<25kPa: exudes in finge	ers when some	eezed): S -	Soft (25-4	50kPa: easily r	enetrated by fiet)		FRACTURES
thumb); Fb = Fri	St =	Stiff ((crum	100-200kPa; bles or powd	indented l ers when s	by thumb craped b	, penetra by thumb	ted with difficulty); VSt= Ver nail)	ry Stiff (200-4	00kPa; easi	ly penetra	ted by thumbna	ail); H = Hard (>40	0kPa; indented by thu	mbnail with difficulty);
Relative	b = Friable (crumbles or powders when scraped by thumbnail) Relative density (sand and gravel) VL = Very loose (ravelling); L = Loose (easy shovelling); MD = Medium dense (hard shovelling); D = Dense (picking); VD = Very dense (hard picking)													

	/000		<u> </u>	romor Div	Ltd. Ex	wiropp	nontal	engineering and	laroundu	inter a	alagista							
h	ttp:	//w\	ww.v	villiamccro	mer.co	<u>m/</u>		engineering and	i groundw	ater ge	eologists					Pi	t R	
	=)	X	Ca	avat	ion	10	g										Sheet 1 of 1	
-		-						ss drivew	ay			Loca	tion					
C	001	rdiı	nate		608mE 1728m			Expos	ure type	e Exc	avator te	est pit			Date	-	July 2014	
D	atu	ım		GD/				Equip	ment	4.5t	Komats	u with ().45m			ate logged 31 July 2014		
	L				rox. 12	m AHE)				bucket w		eth		Logged by W. C. Cromer			
				s (m) Length 1.	2 Widt	th 0.6		Operator Glen I			n Edwar				Check rength	wecked by W. C. Cromer		
-	. 1	ť	5	Notes	ŝ	5	s	Materials			ωc	드 값 Ă Hand				namic cone	Structure,	
Danatration	2	Support	Water	Samples and tests	RL metres Depth	Graphic log	NSCS	Soil type, col particle characte	our, plasticity	ndary	Moisture condition	Consistency Density index	penetr omete (kPa)	r Vane (kPa)	pe (9kg h	ammer falling 510mm) (Blows per 100mm)	geology and interpretation	
	1 m					- <mark>/</mark>	SP	Silty gravelly	SAND:	black;	D-M	MD		4	0.40	00864250 ⁰⁰	Fill?	
			GNE		 - 0.5 - 		GM GC/	Gravelly SILT: li Gravelly SILT: li Gravelly CLAY mod plasticity SILTSTONE:	small ght grey : olive I	shell	D M <pl< th=""><th>Fb-D VSt</th><th></th><th></th><th></th><th></th><th>Subsoil (B horizon)</th></pl<>	Fb-D VSt					Subsoil (B horizon)	
					- 1- - 1-		/	fractured; mod v Excavator refus Permian-age sil	veathered sal at 1.0	m on			-		- Εstir CBR	부 는 원 원 공 등 등 요 mated in-situ 운 (%)	Siltstone bedrock	
												DA94 2 42 000m	nN	e R S		5 37	500	
	ſ	,	/ and	0.5m												Graphic	log key	
			I sca						Ea	st			West				CLAY (CH, CL)	
	lois		re	oist W = W	et									0m			SAND (SP)	
D 50	Samples D = disturbed; U50 = undisturbed; 50mm diameter drive tube (top &) bottom depths shown)							- 1				-0.5			SILT (SM)			
	Water Water level											-1.5	Ν	••••	GRAVEL (GP, GW)			
	Water outflow														COBBLES (63-200mm)			
e	GNE = Groundwater not encountered						2n	n	1.5 1	m ().5	2m			BOULDERS (>200mm)			
	Penetration 1 2 3 4														SHELLS SHELL FRAGMENTS			
	No resistance													ROOTS				
600	Refusal					in fincers	hen carr		Soft /2F	50kPa: easi	ly penetrated b	v fist): E –		FRACTURES				
thun Fb =	Consistency (silt, clay, sandy clay, silty day) VS = Very soft (<25kPa; exudes in fingers when squeezed); S = Soft (25-50kPa; easily penetrated by fist); F = Firm (50-100kPa; easily penetrated by humb); St = Stiff (100-200kPa; indented by fist); F = Firm (50-100kPa; easily penetrated by humb; B = Firatile (crumbles or powders when scraped by humbnail); VSt= Very Stiff (200-400kPa; easily penetrated by humbnail); H = Hard (>400kPa; indented by humbnail); H = Firatile (crumbles or powders when scraped by humbnail); L = Loose (easy shovelling); MD = Medium dense (hard shovelling); D = Dense (picking); VD = Very dense (hard picking)																	

_																
				romer Pty. villiamccro			nental,	engineering and	d groundwater g	jeologists	5			l F	Pit S	
	Ε	X	Ca	avat	ion	lo	a								Sheet 1 of 1	
							<u> </u>	ss drivew	av		Loca	tion				
F	Coo	-			542mE				suretype Ex	cavator t			D	Date dug 31 July 2014		
	D -4				1695m	N					Date logged 31 July 2014				31 July 2014	
	Date RL	um		-	A94 rox. 8m			Equip			t Komatsu with 0.45m bucket with 4 teeth Log			ogged by	W. C. Cromer	
	Dim			s (m)				Opera		en Edwai		Jour			W. C. Cromer	
	Dept	h ().9	Length 1.	2 Wid	th 0.6		Strength								
	'n	ť	er	Notes	es	bc	s		erials	e r	e X	Hand	Shear	Dynamic co		
	Penetration	Support	Water	Samples	metres	Graphic log	nscs	particle charact	our, plasticity or eristics, secondary	Moisture condition	Consistency Density index	penetr- ometer	Vane	penetromet (9kg hammer falling 510		
	enet	ดี		and tests	_	rapł		and minor	components	S Mo	isity	(kPa)	(kPa)	(Blows per 100mm)		
÷	പ് പന				RL Depth	U U					о P	400 250 250 250 250 250 250 250 250 250 2		0408000466	52	
			щ			V	SP	Silty gravelly locally with	SAND: black small she		MD	-	-		Fill?	
			GNE					fragments	Silidii Sile			-				
						$\overline{V}_{\overline{n}}$						-			-	
					- 0.5 -		SP	Silty SAND: yell	ow brown	D	MD	-	-		CB horizon	
L								SILTSTONE: brown; subh	yellowish grey prizontal; mod			-	-		(weathered	
						<u></u>	/	fractured; mod v				-			bedrock?) Siltstone bedrock	
					- 1- 			Excavator refu Permian-age sil	sal at 0.9m on tstone bedrock			-	-		-	
												-	-	en ∞ ♀ ♀ ♀ ♀ ♀ ♀ ♀ Estimated in-situ		
								-	Aller	CBR (%)	GDA94					
	- 1.5 - 										37000mN					
										AREA .	F E					
								All and		100						
					- 2 -									<u>K</u>		
							GDA94 52 42 000n	nN	125	M						
											6.812	A DOWNER OF THE OWNER OF THE OWNE		N		
					- 2.5 -								0	1		
												1	Р			
													Q			
					- 3-								O P Q R		AND DIS DESIGNATION	
											1	-	-			
													Section Ser) -	GN 500	
					- 3.5 -						U		-	-	ox. metres	
\vdash												FIIII		Grank	ic log key	
			/ and	0.5m											7 7	
L			H scal	e					South			North			CLAY (CH, CL)	
	U Moi:).5n)m			
				oist W = W	/et					7 -					SAND (SP)	
	San D = di			50 = undistu	rbed:								0.5		SILT (SM)	
L	D = disturbed; U50 = undisturbed; 50mm diameter drive tube (top & bottom depths shown)															
	Wat	er										1	Im — 🚺		GRAVEL (GP, GW)	
	Water level Water inflow															
1	Water outflow										.5		COBBLES (63-200mm)			
	GNE = Groundwater not										2m _		BOULDERS			
1	enco Pen	unter	ed						2m	1.5	1m (0.5		ه	(>200mm) SHELLS	
I	1 2 3 4											S S S S S S S S S S S S S S S S S S S	SHELL FRAGMENTS			
1													ROOTS			
C	Refusal Consistency (silt, clay, sandy clay, silty clay) VS =				= Verv s	oft (<25kPa: exudes	in fingers when so	Jeezed): S	= Soft (25-f	50kPa: easily	penetrated by fist	; F = Firm (50-100	FRACTURES			
th	umb);	St =	Stiff (100-200kPa; bles or powd	indented I	by thumb	, penetra	ated with difficulty); \	St= Very Stiff (200-	400kPa; eas	sily penetra	ted by thumbr	hail); $H = Hard (>4$	100kPa; indented by	thumbnail with difficulty);	
								ing); L = Loose (easy	v shovelling); MD =	Medium den	se (hard sh	novelling); D =	Dense (picking);	VD = Very dense (ha	rd picking)	

Attachment 6 (24 pages) Site and test pit photographs (8, 30 and 31 July 2014) The staff is graduated in 1m long white and yellow segments. The numbers on it are decimetres.

Plate 1 (above). View west across the western corner of Mortimer Bay towards test pit B.

Plate 2 (below). View west from near test pit A over a shore platform of Permian-age siltstones dipping WSW at about 8° . The rocks form the bedrock of the Maria Point peninsula, and are generally slightly weathered, moderately fractured, and high strength.

Plate 3 (above). View east from near test pit D. The low-lying ground about 1m AHD is underlain by about 1 00150 1.5m of aeolian and beach sand overlying estuarine clay. The sands contain in-situ shell lenses and horizons, and a water table is present at about mean sea level.

Plate 4 (below). View east from near test pit E towards steeper ground composed of aeolian sand and silty sand probably locally up to 2 - 3m thick, overlying Permian-age siltstone bedrock. The yellow dashed line is the (very approximate) outline of a probable shallow translational landslide in aeolian sand and silty sand.

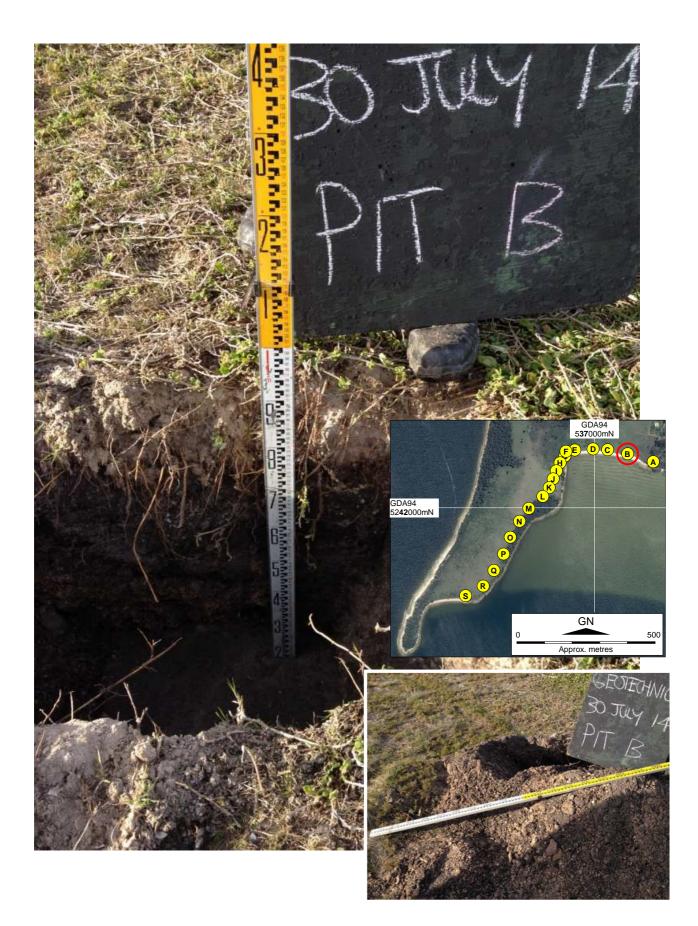
Plate 5 (above). View north towards test pits F and G. Siltstone bedrock was present in the base of test pit F at 2m, and beach shingle similar to that in the foreground was exposed in test pit G at 1.6m. The yellow dashed line is the (very approximate) northeastern limit of a probable shallow translational landslide in aeolian sand and silty sand. The dark-coloured silty sand soil is (a) probably moving downslope very slowly, and (b), is being removed at about the same rate by marine erosion.

Plate 6 (below). View north from near test pit I.

Plate 7 (above). View N showing subhorizontal Permian-age siltstones and sandstones dipping WSW – a similar attitude to the same rocks exposed near test pit A.

Plate 8 (below). View NNE towards test pit J. The hillside shown here is composed of Quaternary-age colluvial deposits of silty gravelly clay and clayey sand up to about 2m thick overlying Permian-age siltstone.

Plates 9 (above) and 10 (below). Views SSW towards Maria Point, along an abandoned, formed access track, near test pits P and Q. Fill up to about 1.2m thick (in test pits P and Q) forms the outer eastern side of the track. The undisturbed ground comprises silty gravelly sand soils up to a metre thick, over subhorizontal Permian-age siltstone.



Attachment 7

(7 pages)

Geology, soils, surface drainage and groundwater

7.1 Geology

Published geology

The published geology⁸ of the area (Attachment 2) shows that shallowly W to WSW-dipping Permian siltstone and sandstone of the Abels Bay Formation underlies the western end of Mortimer Bay, including Maria Point, and the study strip described in this report.

Low-lying ground behind the beach at the end of Rifle Range Road is underlain by undifferentiated Quaternary unconsolidated beach, aeolian, estuarine and alluvial sediments.

Observed geology

Observations support the published geology.

Bedrock

Siltstone and fine-grained sandstone dipping at about 8[°] to the WSW is exposed on the shore platform near test pit A, and similar rocks crop out between high and low water mark on the eastern side of the Maria Point headland, from test pit H to S.

Siltstone bedrock was also exposed at an average depth of 1m (range 0.7 - 2m) in test pits A, B, F, K, L, M, N, O, P, R and S.

Quaternary sediments

Unconsolidated beach sand was encountered in test pits B, C, D and E. In pit B, the sand rested directly on siltstone bedrock. In pits D and E, it overlaid olive green clay interpreted as estuarine.

Aeolian sand, locally organic, was exposed in test pits F and G. In the latter, it rested on sandy beach shingle.

Quaternary colluvium

Material interpreted as colluvial in origin was exposed in test pits H, I and J (Attachments 5 and 6), where it typically consists of gravelly sand (GW), and clayey sand (SC, CL). The colluvium is nonplastic or of low plasticity, dry to moist, and friable and dense.

The colluvium is probably no more than a meter or two thick, overlying Permian sedimentary rocks.

7.2 Recent fill

In Section 3, the abandoned access track comprises fill up to about 1.2m thick along its outer edge (see the logs of test pits P, Q, and R in Attachment 5, and their photographs in Attachment 6).

No other instances of significant fill were observed.

7.3 Interpreted geological map and cross sections

Figure 8.4 in Attachment 8 presents conceptual cross sections across Section 2 of the study strip, which are consistent with site observations but which may need to be amended as more information becomes available.

⁸ Calver, C. R. and Latinovic, M. (compilers) 2002. Digital Geological Atlas 1:25,000 Scale Series. Sheet 5224. Taroona. Mineral Resources Tasmania.

Soil texture and thickness

<u>Section 1 soils</u> comprise uniform sandy (SP) profiles a metre or so thick, overlying siltstone bedrock or estuarine clay (Attachments 5 and 6).

<u>Section 2 soils</u> at test pits E, F and G are uniform profiles of aeolian sands over siltstone bedrock or beach shingle. Test pits H, I and J exposed duplex profiles up to about 1.5m thick consisting of a dark-coloured topsoil sand (SP) over subsoil clay (CH) or gravelly clay (GW), usually overlying colluvium.

<u>Section 3 soils</u>, where undisturbed by former access track construction, are duplex profiles up to about 1m thick consisting of a dark-coloured topsoil silty sand (SP) over subsoil clay (CH) or gravelly clay (GW), overlying siltstone bedrock.

Soils along the study strip plot towards the sand apex of the sand – silt – clay soil clafficiation triangles in Figure 7.1.

Reactivity of materials

No subsurface materials were tested for reactivity⁹.

Bearing capacity of materials

Undrained shear strength testing of materials in and next to most test pits was conducted by shear vane testing and dynamic cone penetrometer (DCP) profiling. Results are recorded on the test pit logs in Attachment 5, where the DCP profiles were also correlated with California Bearing Ratio (CBR) values (Tables 7.1 and 7.2). This testing has shown that surface materials along the study strip are of low strength, with DCP values (blows/l00mm) are often less than 2, and CBR (%) less than 3.

A range of DCP and CBR was recorded for subsurface clays, colluvium and aeolian sand, with DCP refusal on bedrock.

These strength testing results will be useful guides for pavement design for the access road.

Tunnel erosion and soil dispersion

No instances of tunnel erosion (suggestive of dispersive soils) were noted during site investigations.

Surface infiltration rates

Table 7.3 provides guidance on infiltration rates (from rainfall). All surface soils observed along the study strip (ie sand, silty sand), of loose to medium dense relative density.

In Section 1, infiltration rates are expected to be in the 20 - 30mm/hour range. On steeper ground in Sections 2 and 3, rates might be less than 10mm/hour.

For drainage design works, these infiltration rates might usefully be combined with the rainfall intensity-frequency-duration curves (Figure 3 in the body of the report).

Table 7.3 is also in general accord with application ("design loading") rates for absorption trenches and beds in Table L1 of AS/NZS1547:2012 *On-site domestic wastewater management*, and would be applicable to the design of diffusion/retention trenches which may be required along the proposed access road.

7.5 Surface drainage

Section 1

A Class 3 or 4 watercourse¹⁰, with a catchment area of some 50ha and stream length of about 500m, crosses Section 1. The creek is probably intermittent, and has been dammed along its length in several places.

 $^{^{9}}$ Reactive materials contain clays which shrink and swell in volume when their moisture content decreases or increases respectively.

Section 2

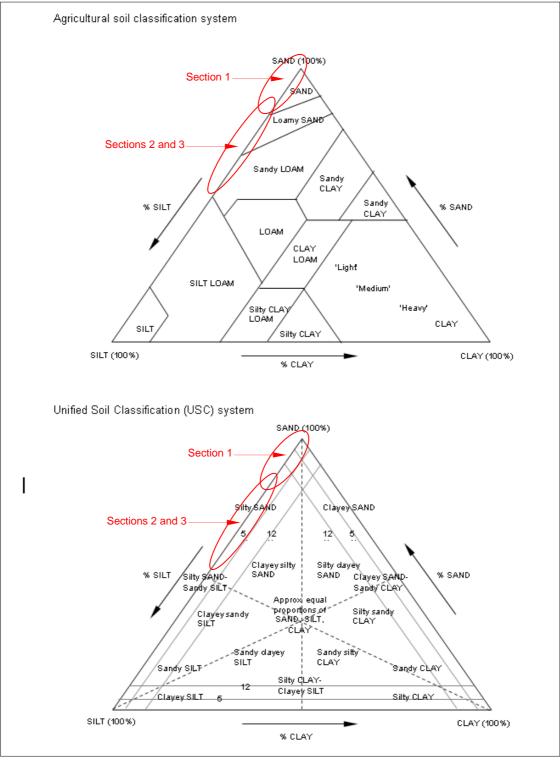
It is reported than a seepage/spring line crosses Section 2, probably between test pits E and H. There was no obvious surface expression observed during the current investigations. The catchment area is likely to be about a hectare.

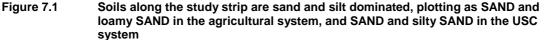
Section 3

No drainage lines were observed along Section 3. Surface drainage is via diffuse runoff.

Consistency	Field Test	Undrained Shear Strength c _u Torvane	Unconfined Compressive Strength q _u Pocket	Dynamic Cone Penetrometer blows/100 mm	CPT Resistance MPa	CBR (%)	Estimated safe bearing capacity for shallow footings (kPa)
		(kPa)	Penetrometer (kPa) **				(Factor of Safety = 2.5)
Very soft	Easily penetrated >40 mm by thumb. Exudes between thumb and fingers when squeezed in hand.	<12	<25	<1	<0.2	<1	<25
Soft	Easily penetrated 10 mm by thumb. Moulded by light finger pressure	12 - 25	25 - 50	1	0.2 - 0.4		25 – 50
Firm	Impression by thumb with moderate effort. Moulded by strong finger pressure	25 - 50	50 - 100	1-2	0.4 - 0.8	1 – 3	50 – 100
Stiff	Slight impression by thumb cannot be moulded with finger.	50 - 100	100 - 200	2 -4	0.8 - 1.5	3 – 8	100 – 200
Very Stiff	Very tough. Readily indented by thumbnail.	100 - 200	200 - 400	4 - 8	1.5 - 3.0	8 – 17	200 - 400
Hard	Brittle. Indented with difficulty by thumbnail.	>200	>400	>8	>3.0	>17	>400

Table 7.1 Correlations between soil strength testing results and CBR values


Table 7.2	Typical values for California Bearing Ratio (CBR)
-----------	---


Material	USC soil	Description	CBR range
Watenai	symbol	Description	(%)
Crushed	GW, GP,	Gra∨el, ∨ariably graded, silty	20 – 100
stone	GM	Gravel, variably graded, sity	20 - 100
	GW	Gra∨el, well graded	40 - 80
	GP	Gra∨el, poorly graded	30 - 60
	GM	Gra∨el, silty	20 - 60
Coarse	GC	Gra∨el, clayey	20 – 40
grained soils	SW	Sand, well graded	20 - 40
	SP	Sand, poorly graded	10 – 40
	SM	Sand, silty	10 – 40
	SC	Sand clayey	5 – 20
	ML	Silt, low plasticity	<=15
	CL	Clay, low plasticity	<=15
Fine grained	OL	Organic silt, low plasticity	<=5
soils	MH	Silt, high plasticity	<=10
	СН	Clay, high plasticity	<-=15
	OH	Organic silt, high plasticity	<=5

¹⁰ Watercourse classification in accordance with Table 8 of the Forest Practices Code (2000). See Forest Practices Board (2000). Class 1 watercourses are rivers, lakes, etc named on 1:100,000 topographic maps; Class 2 watercourses exclude Class 1 types and have catchments greater than 100ha; Class 3 watercourses have catchments between 50 and 100ha; Class 4 watercourses have catchments less than 50ha.

Table 7.3Soils along the study strip are sand and silt dominated (inside red border), and
are expected to exhibit infiltration rates up to about 30mm/hour depending on
slope angle

510	ppe angle.		Slo	pe angle (degr	ees)					
		0 – 3	3 – 5	5 – 7	7 – 9	>9				
USC System	Agricultural class system	Infiltration rate (mm/hour)								
SAND	Coarse Sand	32	25	19	13	8				
SAND	Medium Sand	27	22	16	11	7				
SAND	Fine Sand	24	19	14	10	6				
SAND with some silt and clay	Loamy Sand	22	18	13	9	6				
Clayey silty SAND and silty clayey SAND	Sandy Loam	19	15	11	8	5				
Clayey silty SAND and silty clayey SAND	Fine Sandy Loam	16	13	10	6	4				
Clayey silty SAND and silty clayey SAND	V. Fine Sandy Loam	15	12	9	6	4				
SILT-SAND-CLAY in roughly equal proportions	Loam	14	11	8	6	4				
Clayey sandy SILT, sandy clayey SILT and sandy SILT	Silt Loam	13	10	8	5	3				
Silt	Silt	11	9	7	5	3				
Sandy Clay	Sandy Clay	8	6	5	3	2				
SILT-SAND-CLAY in roughly equal proportions	Clay Loam	6	5	4	3	2				
Silty Clay	Silty Clay	5	4	3	2	1				
Clay	Clay	3	3	2	1	1				

Adapted from http://qcode.us/codes/sacramentocounty/view.php?topic=14-14_10-14_10_110&frames=on

USC = Unified Soil Classification

7.6 Groundwater

Groundwater in unconfined, fractured rock aquifers

Permanent groundwater is known to be present under unconfined conditions in fractured bedrock types in the district (Figure 7.2). The groundwater is recharged by infiltrating rain and at intermediate scale discharges to Mortimer Bay.

Shallow groundwater in unconfined sediments

Sections 1 and 2

Shallow groundwater was observed in aeolian and beach sands in test pits B, C, D, E and G. No water table depths were recorded since water inflow was continuing when the pits were backfilled. Nevertheless, a permanent water table is expected to be present in these materials at depths close to mean sea level, but fluctuating with tidal level immediately adjacent to the coast. Gradients are low, and groundwater flow rates correspondingly low and towards the coast.

Section 3

Shallow groundwater is not expected to be present, except in saturated soils above bedrock after rain.

7.7 Slope stability

Landslide risk

See Attachment 8 for a Landslide Risk Management assessment of Section 2 of the study strip.

Cut and fill batters for construction of the access road

Depending on engineering design, cut and fill along the access road is likely to be required in parts of Section 2 of the access road route. Inspection of the logs for pits H - K (Attachment 5) indicates that cuts of more than a metre or so will expose moderate to high plasticity subsoil clay.

Table 7.4 suggests that appropriate cut and fill batter angles for these subsoils will be in the 18 -26° range (3:1 to 2:1 horizontal:vertical), but using drained, engineered retaining walls will partly or fully obviate the need for cut batters. For example, a wall which supports a clay subsoil but leaves exposed the coarser sand topsoil will permit the batter angle to be relaxed to about 34° .

Figure 7.2 Recorded water bores (blue circles) in the vicinity of the study strip. The two closest ones are bore 18887 (drilled 1985; 61m deep into Permian rocks; water table at 12m; initial yield 0.37L/sec), and bore 30216 (abandoned; drilled 91m into Permian rocks in 2003). Source: http://wrt.tas.gov.au/groundwater-info/

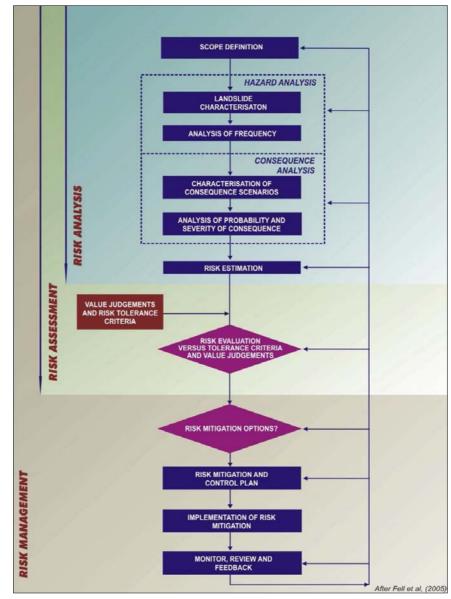
Table 7.4

Cut and fill along parts of Section 2 of the proposed access road will expose moderate to high plasticity clay subsoils (bordered in red), which, if not supported by engineered, drained retaining walls, may require batter angles of $18 - 26^{\circ}$ range (3:1 to 2:1 horizontal:vertical).

	Slope ratio (Hor:∨ert)	Slope angle (degrees)	Section
Most rock	1/4:1 to 1/2:1	76 to 63	
Very fractured rock	1:1 to 1.5:1	45 to 34	
Soils (very well cemented)	1/4:1 to 1/2:1	76 to 63	
Most in-place soils	3/4:1 to 1:1	53 to 45	
Loose coarse granular soils	1.5:1	34	
Heavy clay soils	2:1 to 3:1	26 to 18	
Soft clay-rich zones or wet seepage areas	I 211to 31	26 to 18	
Fills of most soils	1.5:1 to 2:1	34 to 26	
Fills of hard angular rock	1.3:1	37	
Low cuts and fills (<2-3m high)	2:1 or flatter	26 or less	

Source: Slope Stabilization and Stability of Cuts and Fills

http://www.blm.gov/bmp/low%20volume%20engineering/M_Ch11_Slope_Stabilization.pdf



Attachment 8 (9 pages) Landslide Risk Management

This Attachment addresses slope stability (landslide) issues for Section 2 of proposed access road (between test pits E and I), in accordance with Australian Geomechanics Society (AGS) Landslide Risk Management (2007)¹¹. The process is depicted in Figure 8.1.

The main types of landslide movement are shown in Figure 8.2 and listed in Table 8.1.

Figure 8.1. Framework for Landslide Risk Management

Source: Reproduced without amendment from AGS (2007a). Guideline for Landslide Susceptibility, Hazard and Risk Zoning. Australian Geomechanics, Vol 42 No 1 March 2007

¹¹ The five AGS documents are:

AGS (2007a). Guideline for Landslide Susceptibility, Hazard and Risk Zoning. Australian Geomechanics, Vol 42 No 1 March 2007

AGS (2007b). Commentary on Guideline for Landslide Susceptibility, Hazard and Risk Zoning. Australian Geomechanics, Vol 42 No 1 March 2007

AGS (2007c). Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

AGS (2007d). Commentary on Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

AGS (2007e). The Australian Geoguides for Slope Management and Maintenance. Australian Geomechanics Vol 42 No 1 March 2007

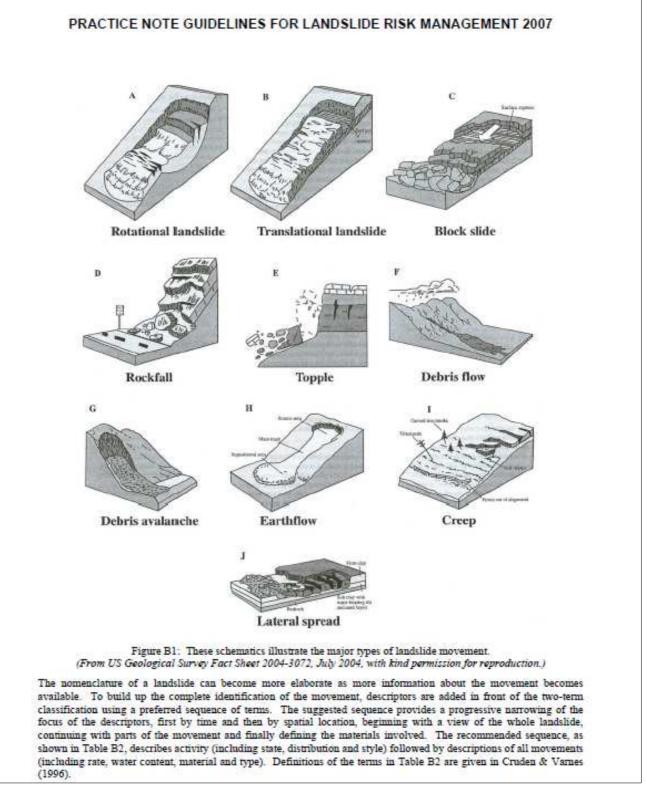


Figure 8.2

Main types of landslide movement

Source: From Appendix B of AGS (2007c). Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

Table 8.1

Main types of landslide movement. Site investigations demonstrate that only earthslides and debris slides (bordered in red) are credible types of slope failures along the study strip.

Source: From Appendix B of AGS (2007c). Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

		TYPE OF MATERIAL		
TYPE OF MOVEMENT		BEDROCK	ENGINEERING SOILS	
			Predominantly Coarse	Predominantly Fine
	FALLS	Rock fall	Debris fall	Earth fall
	TOPPLES	Rock topple	Debris topple	Earth topple
SLIDES	ROTATIONAL	Rock slide	Debris slide	Earth slide
SEIDES	TRANSLATIONAL	ROCK SHOC	Deons since	Larur sinde
	LATERAL SPREADS Rock spread Debris spread Earth spread			
FLOWS		Rock flow	Debris flow	Earth flow
		(Deep creep)	(Soil creep)	
	COMPLEX Combination of	f two or more princip	ole types of movemer	ıt

LANDSLIDE RISK MANAGEMENT (LRM)

8.1 **Preliminary**

Field investigations demonstrate that of the landslide types listed in Table 8.1, only earthslides and debris slides are credible forms of actual or potential slope failure along the study strip. Further, these two types are considered not credible in Section 1, and unlikely in Section 3.

Accordingly, this LRM relates only to Section 2.

Desktop review of slope instability

Unpublished evidence

I am unaware of any unpublished reports referring to slope stability issues in the vicinity of Section 2, other than the Proof of Evidence provided by Pollington (2014)¹² which described a landslide in Section 2.

Published evidence

I am unaware of any published reports relating to slope stability issues in the vicinity of Section 2 (or indeed, in Sections 1 and 3 also).

More recently, landslide hazard band maps covering all of Tasmania have been released by the Department of Premier and Cabinet, using data provided by Mineral Resources Tasmania, and are available at www.thelist.tas.gov.au. The landslide hazard banding for the proposed access road, reproduced here in Attachment 2, shows Section 1 to lie within the Acceptable band¹³, and Sections 2 and 3 to be mostly in the Low band.

Field evidence

Visual inspection, and test pit F, is inconclusive but topographically the feature in Section 2 identified by Pollington resembles a landslide¹⁴. Satellite imagery (Figure 8.3) suggests it may be two smaller features (SW and NE parts) which appear to have involved failure of aeolian

¹² Pollington, M. (2014. 742, 750, 765 & 845 Rifle Range Road, Sandford. Proof of Evidence to RMPAT (16 May

^{2014)&}lt;sup>13</sup> <u>Acceptable band:</u> A landslide is a rare event based on current understanding of the hazard, but it may occur in some

Low band: The area may include landslide features but their activity is unknown, and they have been judged by MRT to rank of lesser risk than those in higher bands.

 $^{^{14}}$ It has been suggested to me that the feature may be a borrow area for sand. Figure 8.3 shows what appears to be a near-horizontal track leading from the feature(s) towards the nearby waterhole and abandoned house, which is not inconsistent with this origin. But the borrowing operations might have been subsequent to landsliding. The site is thickly covered with and obscured by low vegetation, so it is not possible to visually distinguish between the two origins without more detailed geotechnical work (including geomorphological mapping and subsurface investigation). For the purposes of this report, the feature(s) is assumed to be landsliding, and assessed as such.

sand and silty sand on $20 - 28^{\circ}$ slopes. Test pit F shows that the unconsolidated materials overlie siltstone bedrock.

Instability in sandy material on slope angles like these is somewhat unusual, but it is reported that seepage water, which may have promoted instability, is present. The northern and southern flanks are topographically ill-defined, but one or more short internal segments are steep-sided and appear to be head scarps. There is no well-defined toe at the base (test pit G exposed 1.5m of aeolian sand over beach shingle).

Silty sand exposed at the rear of the beach is currently being eroded by marine action.

Technically, the features are inferred to be small, slow-moving rotational, active¹⁵ earthslides. They are collectively called Scenario 1 in the conceptual and schematic geological cross section in Figure 8.4.

Elsewhere in Section 2, there are no obvious signs of slope instability. Nevertheless, a credible form of failure – here termed Scenario 2 – involves colluvial materials over bedrock.

Site investigations

Site investigations relied on in this LRM are described in Attachments 3, 4, 5, 6 and 7 to this report.

Site plans and maps

Site plans and maps are included in several Attachments to this report.

8.2 Site sections (natural scale) and conceptual geological models

Figure 8.4 provides two natural-scale cross sections (conceptual models) through slopes in Section 2.

8.3 Hazard Analysis

Landslide characterisation

Figure 8.4 schematically shows potential forms or scenarios (red lines) of landslide movement in Section 2.

Scenario 1

Small-scale, slow moving rotational or translational earthslide in aeolian sand

Scenario 2

Small- to medium scale, slow moving translational earthslide or debris slide in colluvium

Frequency analysis

Table 8.2 (this Attachment) lists the subjective likelihood of occurrence of the landslide hazards shown in Figure 8.4 under post-development conditions, having due regard to the geotechnical investigations described in the present report. Terminology for measures of likelihood and consequences to property are explained in Figure 8.5.

8.4 Consequence analysis and qualitative risk to access road estimation – before and after treatment

Table 8.2 (this Attachment) is a consequence analysis and risk to property assessment for the two scenarios shown in Figure 8.4.

Before treatment, risks associated with Scenario 1 range from Low to Very High depending on the consequences. After treatment, risks reduce to Low. Low risks are generally regarded as Acceptable.

¹⁵An <u>active</u> landslide has moved since European occupation.

Risks associated with Scenario 2 are Low. No treatment is required to specifically address this risk.

8.5 Qualitative risk to life estimation – after development

Scenarios 1 and 2 present acceptably low risks to life. The highest risk is related to Scenario 1. Figure 8.6 is an event tree which assesses the risks to life for an occupant of a vehicle travelling the access road, and either being hit by the landslide, or hitting the landslide.

Table 8.2Post-development frequency, consequence and risk assessment for
Scenarios 1 ands 2 shown in Figure 8.4

After de		elopment, without treatment			After development, with treatment		
Scenarios in Figure 8.4	Likelihood	Consequences to access road	Risk to access road	Treatment	Likelihood	Consequences to property	Risk to property
1	Likely	Minor to Major	Moderate to ∨ery High	Enginered drained retaining walls (manages Consequences)	Unlikely	Minor to Medium	Low
2	Unlikely	Minor to Medium	Low	None required (controlled drainage manages erosion risk)	Unlikely	Minor to Medium	Low

8.6 General comments on suggested risk mitigation actions in Section 2 Accepting the risk

Risks to the access road assessed as Low are Acceptable after treatment

Avoiding the risk

Avoiding the risk by <u>not developing parts of the study strip</u> is not feasible if the access drive is to be constructed.

Reducing the frequency of the risk

Reducing the frequency of the Scenario 1 risk is achieved by the recommended drainage and retaining wall controls.

Reducing the consequences of the risk

Reducing the consequences of the Scenario 1 risk is achieved by the recommended drainage and retaining wall controls.

Monitoring the risk

Unnecessary

Transferring or postponing the risk

Unnecessary

8.7 Suggested risk mitigation plan for Section 2

General comment

Development of the access road in Section 2 (and Section 3) should be in accordance with the examples of good hillside construction practices included here in Attachment 9.

Retaining walls

In Section 2, engineering design is required for cut and fill along the alignment of the access road, and for the appropriate design of drained retaining walls where required. Wall design should incorporate appropriate batter angles where needed, and adequate resistance to lateral forces on the hillside slopes, particularly between test pits F and I.

Low strength surface materials

Low-strength surface material shall be removed from the alignment before construction, and suitable fill, where used, shall be placed in a controlled manner. Clayey materials shall be avoided as fill.

Drainage controls

Between test pits E and G, appropriate culverting shall be employed at the low point in the access road to manage surface and shallow subsurface drainage, which should then discharge in pipework to the lower edge of the study strip. This same culvert could be sized and designed to collect runoff from the southern portion of Section 2¹⁶.

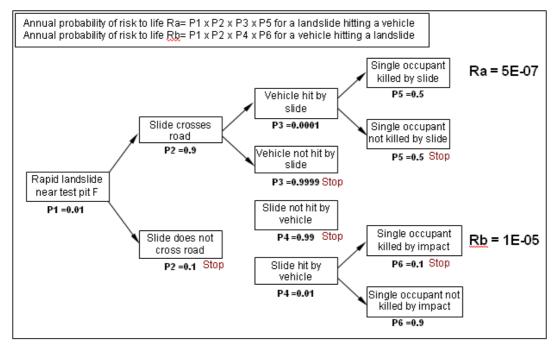


Figure 8.6 Event tree for risk to life for an occupant of a vehicle travelling the access road and being hit by a rapid landslide (risk Ra) or hitting a landslide (risk Rb). The latter is the higher of the two, but both are acceptably low.

¹⁶ In Section 3, culverting shall collect diffuse upslope surface runoff, direct it under the access road, and retain and diffuse it again from absorption trenches. At each culvert, trenches on the lower side of the access road should be nominally 0.3m wide x 0.3m deep x 10m long, containing perforated pipework wrapped in geotextile and covered by durable aggregate, and backfilled with on-site topsoil. Other designs which satisfactorily achieve similar drainage control will be acceptable.

Figure 8.3 Historical satellite imagery of the landslide feature in the western corner of Mortimer Bay. The 2005 and 2011 images suggest it may be two smaller features. These images also show what appears to be a track leading from the northeasterly of the two features, towards the water hole and abandoned house. Source: Google Earth

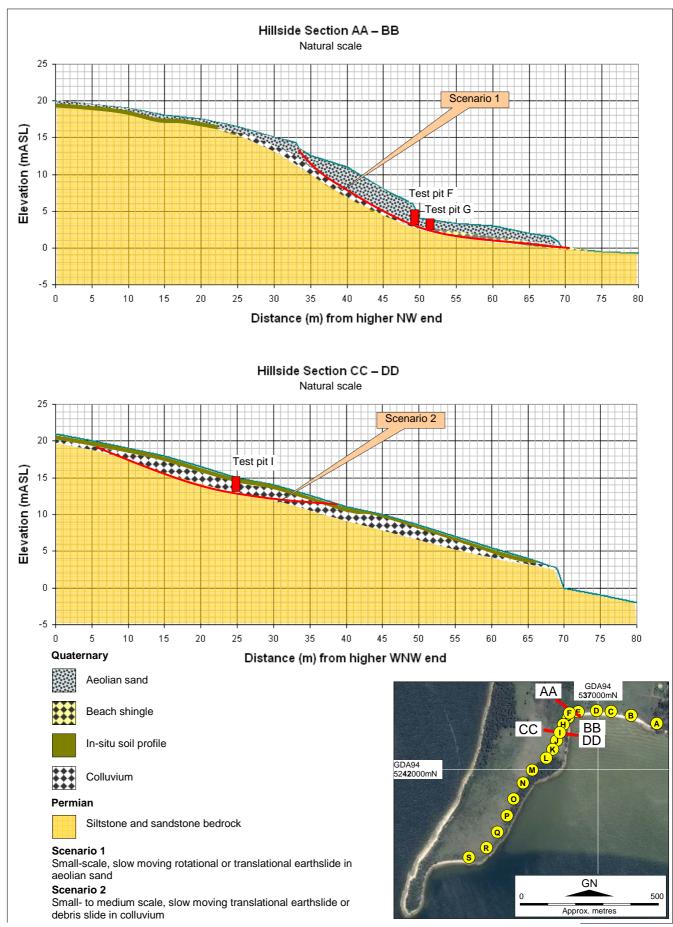


Figure 8.4 Landslide scenarios in Section 2 for Landslide Risk Management

Australian Geomechanics Vol 42 No 1 March 2007

The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa

accommodation. It does not include additional stabilisation works to address other landslides which may affect the property

The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the

works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary

9

Hobart, Tasmania, Australia

+61 408 122 127 billcromer@bigpond.com www.williamccromer.com

Australian Geomechanics Vol 42 No 1 March 2007

QUALITA	QUALITATIVE MEASURES 0	S OF LIKELIHOOD	a		
Approximate A	Approximate Annual Probability	Implied Indicative Landslide	ve Landslide	Docomination	Decompton
Indicative Value	Notional Boundary	Recurrence Interval	Interval	nescribrion	nodinear
10^{-1}	5×10-2	10 years		The event is expected to occur over the design life.	ALMOST CERTAIN
10 ⁻²	5.10-3	100 years	20 years	The event will probably occur under adverse conditions over the design life.	LIKELY
10^{-3}	OTXC	1000 years	200 years	The event could occur under adverse conditions over the design life.	POSSIBLE
10-4	5x10 ⁻	10,000 years	SUDO VOQUE	The event might occur under very adverse circumstances over the design life.	UNLIKELY
10 ⁻⁵	01XC	100,000 years	20,000 years	The event is conceivable but only under exceptional circumstances over the design life.	RARE
10^{-6}	ATAC	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE
Note: (1) QUALITA		e used from left to right S <i>OF CONSEQUE</i>	sed from left to right; use Approximate Annual Pr DF CONSEQUENCES TO PROPERTY	The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa. VE $MEASURES \ OF$ $CONSEQUENCES TO PROPERTY$	
Approximate	Approximate Cost of Damage				

QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007 APPENDIX C: LANDSLIDE RISK ASSESSMENT

Figure 8.5

Descriptive terminology for likelihood and consequences to property used in Table 8.2 Reproduced without amendment from AGS (2007c). Practice Notes Guidelines for Landslide Risk Management.

Level

Descriptor

 \sim

3 4

MEDIUM MAJOR

MINOR

Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works

Could cause at least one adjacent property minor consequence damage

Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant

Could cause at least one adjacent property medium consequence damage

stabilisation works.

40%

%001

60% 20% 5%

1%

stabilisation.

Boundary Notional

Indicative

Value 200%

Structure(s) completely destroyed and/or large scale damage requiring major engineering works for

Description

Could cause at least one adjacent property major consequence damage

(Note for high probability event (Almost Certain), this category may be subdivided at a

See Risk Matrix.

notional boundary of 0.1%.

unaffected structures.

 $\overline{\mathfrak{O}}$

ତ

Notes:

0.5%

4

Little damage.

-

CATASTROPHIC

Ś

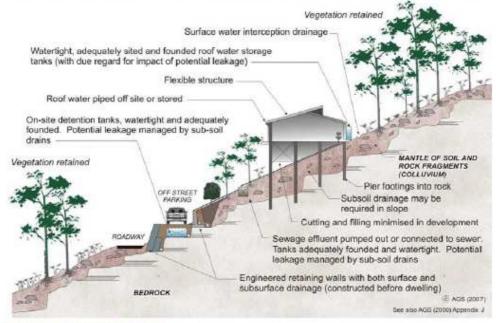
INSIGNIFICANT

Level

4 m υ ρ ш ш

Attachment 9

(3 pages)


Examples of good and poor hillside engineering practices

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

HILLSIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES OF GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

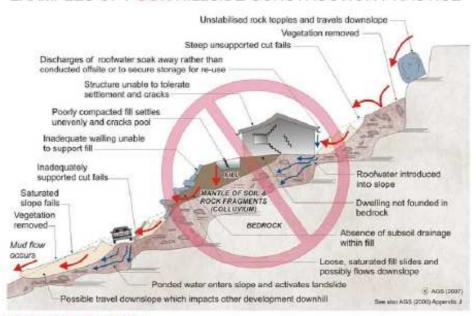
Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.

Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.


ADOPT GOOD PRACTICE ON HILLSIDE SITES

174

Australian Geomechanics Vol 42 No 1 March 2007

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE) EXAMPLES OF POOR HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides GeoGuide LR3 - Landslides in Soil
- GeoGuide LR6 Retaining Walls GeoGuide LR7 Landslide Risk ٠
 - GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR4 Landslides in Rock GeoGuide LR5 - Water & Drainage
- GeoGuide LR10 Coastal Landslides GeoGuide LR11 - Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the Australian Geomechanics Society, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments National Disaster Mitigation Program.

Australian Geomechanics Vol 42 No 1 March 2007

APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

ADVICE -	GOOD ENGINEERING PRACTICE	POOR ENGINEERING PRACTICE
GEOTECHNICAL ASSESSMENT	Obtain advice from a qualified, experienced geotechnical practitioner at early stage of planning and before site works.	Prepare detailed plan and start site works before geotechnical advice.
PLANNING	V/	
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.	Plan development without regard for the Risk.
DESIGN AND CONS	STRUCTION	
HOUSE DESIGN	Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding, Consider use of split levels.	Floor plans which require extensive cutting and filling. Movement intolerant structures.
SITE CLEARING	Use decks for recreational areas where appropriate. Retain natural vegetation wherever practicable.	Indiscriminately clear the site.
ACCESS &	Satisfy requirements below for cuts, fills, retaining walls and drainage.	Excavate and fill for site access before
DRIVEWAYS	Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	geotechnical advice.
EARTHWORKS	Retain natural contours wherever possible,	Indiscriminatory bulk earthworks.
Curs	Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control.	Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements
Fills	Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage.	Loose or poorly compacted fill, which if it fails may flow a considerable distance including onto property below. Block natural drainage lines. Fill over existing vegetation and topsoil. Include stumps, trees, vegetation, topsoil boulders, building rubble etc in fill.
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks of boulders.
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on rock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.	Construct a structurally inadequate wall such a sandstone flagging, brick or unreinforce blockwork. Lack of subsurface drains and weepholes,
FOOTINGS	Found within rock where practicable. Use rows of piers or strip footings oriented up and down slope, Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulder or undercut cliffs.
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.	
DRAINAGE Surface	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide general falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible. Special structures to dissipate energy at changes of slope and/or direction.	Discharge at top of fills and cuts. Allow water to pond on bench areas.
SUBSURFACE	Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge roof runoff into absorption trenches.
SEPTIC & Sullage	Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable. Storage tanks should be water-tight and adequately founded.	Discharge sullage directly onto and into slopes Use absorption trenches without consideratio of landslide risk.
EROSION CONTROL & LANDSCAPING	Control erosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainag recommendations when landscaping.
	ITE VISITS DURING CONSTRUCTION	J
DRAWINGS SITE VISITS	Building Application drawings should be viewed by geotechnical consultant Site Visits by consultant may be appropriate during construction/	
the second s	MAINTENANCE BY OWNER	1
OWNER'S RESPONSIBILITY	Clean drainage systems; repair broken joints in drains and leaks in supply pipes. Where structural distress is evident see advice. If seepage observed, determine causes or seek advice on consequences.	

Australian Geomechanics Vol 42 No 1 March 2007

